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1 SCOPE OF THE DOCUMENT 
This document provides an overview of the algorithms proposed by the Space for Shore consortium to produce the main 

coastal erosion indicators requested by the interviewed end-users (refer to the Requirement Baseline and User 

Requirement Document Book), which usually address short-time scale monitoring. Some of these algorithms are also 

designed to produce the latter indicators over longer timescales with the perspective of demonstrating the potential of 

ESA Earth Observation data archives and other past/currently-growing freely available archives in the study of coastal 

erosion in the past 25 years at European scale. 

The individual algorithms are provided and described by the partners and form the algorithm candidates for the different 

indicators. A maturity status of the algorithms is given. The document provides further a mapping of algorithms to end-

user requirements. Along with these analyses, proposals of algorithms to be used for the different products and pilot sites 

are then made. It is expected that the document will be updated with results derived during the POC, in particular the 

sections describing the accuracy and maturity of the algorithm as well as the discussions on the relevance of the algorithms 

to the end-user requirements. 

 

2 INTRODUCTION 
Based on the end-user requirements, a grouping of coastal erosion indicators and their level of priority were provided in 

the Requirement Baseline document. Overall, 22 end-users had been interviewed within the public sector including 

national governmental agencies, regional authorities, intermunicipal cooperation and municipalities, as well as natural site 

managers, research centers and coastal observatories. From this panel of potential users of Space for Shore services, more 

than 40 products were requested to support current and future practices to manage issues related to coastal erosion. To 

help synthetize end-user requirements these products were grouped in 6 product families. This task enabled to fully 

characterize the end-user needs in terms of product accuracy as well as the update and delivery frequency. It also 

evidenced that some products were systematically requested by end-users of different regions of interest, while others 

were mentioned only by one or two end-users. In combination with the availability of validation data, a priority list was 

provided in the Requirement Baseline document for prototype services to be conducted in the Proof Of Concept (POC) 

phase (WP1.3). In the end, only 4 product families will be considered, which represents a total of 14 products. Table 2-1 

repeats the compilation here for better reading.  

The algorithms that are described in this Technical Specification document are organized in six algorithm groups. These 

groups were built to ease the presentation of the algorithms, as many of these aim at producing similar outputs and/or 

apply with similar environmental constrains. Each algorithm group is introduced by an introductory and a state-of-the-art 

section followed by the description of the main features of algorithms (input data, algorithm type / processing chain, 

output products and tools needed). In addition, information about validation and application range is given for each 

algorithm. This also includes the information on whether an algorithm is mature enough or shall be tested during POC 

exercises. All these descriptions are provided in Chapter 3.  

In chapter 4 the end-user requirements are mapped against the algorithms and algorithm candidates are defined for every 

product and every POC site where the product was requested. Even if not requested by end-users, production of some 

coastal erosion indicators for long-term monitoring at some specific POC sites is envisaged. This will be done for sites 

where coastal erosion dynamics are large enough with respect to (i) the spatial resolution of the EO data from ESA and 

other open archives used in the algorithms and (ii) a targeted 25-yr period toward the past.  

Chapter 5 introduces the on-line platform EUGENIUS that will be used for Space for Shore product dissemination and 

provide basic specifications to allow uploading the products on the platform. 
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Table 2-1. Summary of the main products requested (denoted by yellow colour cells) by interviewed end-users to monitor 
erosion along European coasts, which covers a wide range of geomorphological and environmental conditions. Extracted 
and adapted from the Requirement Baseline. Minor corrections were made following new analyses of end-user forms 
performed during implementation of Chapter 4.  

Family name  Product name  

Regions of interest  
FR  

AQ  

FR  

NOR  

FR  

PACA  

GER  

WS  

GER  

BS  

PT  

NWC  

GR  

EMT  

GR  

PEL  

RO  

  

Shoreline  

Cliff foot                   
Cliff apex                    
Dune foot                   

Waterline (sea/land 
interface)  

                  

Middle of swash zone                  
  

  
Maximum swash (or run-up) 

excursion during major 
storms  

                  

Coastal morphological 
patterns 

Sandbar location                    
Beach width                 

Tidal creeks: number, 
length, form, form and 
number of tidal creek 

endings  

                  

Erosion at tidal creek edges                    
Coastal DEM  

Bathymetry  

                  

Seabed, foreshore and land 
cover mapping  

Underwater seabed type 
(sandy/rocky/vegetated)  

                  

Intertidal / foreshore type 
(sandy/rocky/shingle/…)                   

Coastal habitat and land 
cover mapping (several 

levels)  
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Table 2-2: Overview of algorithm groups and algorithms, their maturity level and responsible partner. The last column 
indicates for which indicators the respective algorithm is relevant. 

Algorithm Group Algorithm Maturity 

level1 

Partner Suitable for: Product Name 

DEMs Algorithm 1a 

DEM generation from optical 

data 

3 i-Sea 

Terra 

Spatium 

Cliff foot  

Cliff apex  

Dune foot 

Maximum swash (or run-up) 

excursion during major storms 

Algorithm 1b 

DEM generation from SAR 

data 

3 Harris Cliff foot  

Cliff apex  

Dune foot 

Maximum swash (or run-up) 

excursion during major storms 

 Water Line and Creek 

Edge Detection 

 

Algorithm 2a 

Water line detection using 

band ratios 

2 Brockmann 

Consult 

Waterline (sea/land interface)  

Middle of swash zone  

Maximum swash (or run-up) 

excursion during major storms 

Beach width 

Algorithm 2b 

Water line detection using 

NDWI 

3 i-Sea Waterline (sea/land interface)  

Middle of swash zone  

Maximum swash (or run-up) 

excursion during major storms 

Beach width 

Algorithm 2c 

Water line detection using a 

supervised classification 

process 

2 i-Sea Waterline (sea/land interface)  

Middle of swash zone  

Maximum swash (or run-up) 

excursion during major storms 

Beach width 

Algorithm 2d  

Water line detection using 

binary products from SAR 

amplitude data 

1 Harokopio 

University 

Waterline (sea/land interface)  

Middle of swash zone  

Maximum swash (or run-up) 

excursion during major storms 

Beach width 

Algorithm 2e 

Edge detection tidal creeks 

using SAR 

1-2 University 

of 

Hamburg 

Tidal creeks: number, length, 
form, form and number of tidal 
creek endings  
Erosion at tidal creek edges 

Extraction of 

subaerial 

morphological 

structures and 

changes 

 

Algorithm 3a 

Dune foot extraction using 

the cross-shore variation of 

first-order texture metrics 

from VHR optical data 

2 i-Sea Dune foot 

Middle of swash zone 

Maximum swash (or run-up) 

excursion during major storms 

 

Algorithm 3b 

Dune foot extraction based 

on beach/dune slope from 

DEM 

1 i-Sea Dune foot 

Algorithm 3c 1 i-Sea Cliff foot 

Cliff apex 



Space for Shore – Technical Specification v.1.1 

 

Page | 7 

 

Cliff line extraction using the 

cross-shore variation of the 

beach/cliff slope from DEM 

Algorithm 3d 

Manual linear feature 

extraction from DEMs (3D 

digitization) 

3 Terra 

Spatium 

Dune foot 

Cliff foot 

Cliff apex 

Algorithm 3e 

Beach width computation 

2 i-Sea Beach width (total, upper, 

mean) 

Algorithm 3f 

Top-of-the-cliff vertical 

movement monitoring using 

PSI 

2 Harokopio 

University 

of Athens 

Cliff movement2 

Algorithm 3g 

Intertidal creek 

morphological characteristics 

1 Brockmann 

Consult 

Tidal creeks: number, length, 
form, form and number of tidal 
creek endings  

Erosion at tidal creek edges 

Algorithm 3h 

Dune foot extraction using 

supervised classification 

2 i-Sea 
Dune foot 

Algorithm 3i 

Cliff line extraction using 

supervised classification 

1 i-Sea Cliff foot 

Cliff apex 

Bathymetry 

 

Algorithm 4a 

Empirical model to retrieve 

bathymetry from HR/VHR 

optical data 

3 i-Sea Bathymetry 

Algorithm 4b 

Quasi-analytical model to 

retrieve bathymetry from 

HR/VHR optical data 

3 i-Sea Bathymetry 

Underwater seabed type 

(sandy/rocky/vegetated)  

Algorithm 4c 

Bathymetry swell inversion 

1-2 University 

of Aveiro 

Bathymetry 

Classification 

methods 

 

Algorithm 5a 

Supervised classification 

approaches based on optical 

data 

3 i-Sea Underwater seabed type 

(sandy/rocky/vegetated)  

Waterline (sea/land interface)  

Maximum swash (or run-up) 

excursion during major storms 

Coastal and intertidal habitat 

and land cover mapping 

Algorithm 5b 

Classification based on 

texture information derived 

from SAR amplitude data 

3 Harris Coastal and intertidal habitat 

and land cover mapping 

Algorithm 5c 

Decision tree classification 

based on band ratios and LSU 

3 Brockmann 

Consult 

Tidal creeks: number, length, 
form, form and number of tidal 
creek endings  

Erosion at tidal creek edges 
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1 Maturity levels:  

1 = innovative or experimental algorithm (not tested yet, want to test ideas in POC sties) 

2 = Demonstration algorithm: tested on selected test sites in selected images 

3 = mature algorithm – well tested, applied and published algorithm 

2 Cliff movement: This indicator has not originally been retained for POC activities since it has been mentioned only once 

(by a coastal observatory in SW France, OCA). However, many end-users may not be aware that existing SAR-based 

algorithms allow obtaining very accurate information about vertical deformation of the ground and could then bring crucial 

information about cliff dynamics and for early warning of landslides. Thus, with the support of Harokopio University of 

Athens, a product indicating vertical movement on the top of the cliff will be finally envisaged.  

 

 

3 DETAILED ALGORITHM DESCRIPTION 

3.1 Algorithm group 1: Generation of DEMs 

 Introduction 

Digital Elevation Models (DEMs) are used as input for several coastal erosion products, either directly by exploiting the 

provided 3D information or indirectly though the production of other DEM-derived datasets, i.e. calculation of volumes 

and 3D lines extraction. 

In particular, many different techniques have been developed the past decades for DEM generation, starting from 

conventional ground topographic surveys (e.g. GNSS techniques), to robust photogrammetric methods and sophisticated 

computer vision techniques (e.g. structure-from-motion, etc.); that exploit data acquired from several different 

instruments and sensors. This chapter is focusing on the description of present state-of-the-art DEM generation algorithms 

applied on satellite, optical and SAR, high (HR) and very high-resolution (VHR) imagery. 

 State-of-the-art 

Optical Imagery 

In the case of optical satellite data -both for HR and VHR-, the existing state-of-the-art algorithms are covering the 

hereunder processing steps: 

1. Image Pre-processing: In order to improve the radiometric quality and optimize the images for subsequent 

processing steps, a series of filters are usually applied on the datasets. The most common pre-processing 

processes encompass noise reduction, contrast and edge enhancement. Noise reduction filters aim at reducing 

noise, while sharpening edges and preserving corners and one pixel-wide lines (Baltsavias et al., 2001). 

2. Image Orientation: In order to achieve the image orientation, a bundle adjustment with the supplied Rational 

Polynomial Coefficients (RPCs) model is usually deployed. RPCs provide a compact representation of a ground-

to-image geometry, allowing photogrammetric processing without requiring a physical camera model. A set of 

Underwater seabed type 

(sandy/rocky/vegetated)  

Coastal and intertidal habitat and 
land cover mapping 

Extraction of 

submerged 

morphological 

structures and 

changes 

 

Algorithm 6a 

Submerged sand banks 

3 Terra Signa Sandbar location  

Algorithm 6b 

Mapping change of sandbars 

2 Brockmann 

Consult 

Sandbar location  

https://en.wikipedia.org/wiki/Photogrammetric
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images (with stereo or tri-stereo overlapping) is given to determine the set of polynomial coefficients in the RPCs 

model to minimise the error. Therefore, RPCs model is a generalized sensor model, which can achieve high 

approximation accuracy, while Least Square Method (LSM) is usually used to determine the optimal parameter 

solution of the rational function model. Indeed, the use of Ground Control Points (GCPs) during this computation 

is providing the best possible accuracy which according to literature review could be sub-pixel (Eisenbeiss et al., 

2004). 

3. DEM Generation Method: Several different matching algorithms are used for DEM generation, starting from the 

early ones like correlation-based methods (i.e. 2D correlation, 3D correlation) to most advanced ones’, like i.e. 

3D Least Square Matching, Global and Semi-Global Matching, to more sophisticated computer vision-based 

algorithms, like Feature Based Matching, Structure-from-motion. In most methods the pyramid image matching 

scheme is used. In general, a pyramid image matching method stores matching results in low resolution matching 

and uses these results as initial points for higher resolution matching. 

As stated previously, it is both possible to use pairs of satellite images (i) acquired simultaneously along the satellite path 

(“mono-date” the satellite looking first frontward and then backward) or (ii) at several consecutive dates (“multi-date”). 

The later has been recently tested on Norman coastal cliffs using a dataset of Pleiades satellite images (Letortu et al., 

submitted). Several aspects of viewing geometry (incidence angle) in relation with coastal geomorphology (e.g. height and 

slope of coastal cliffs, shoreline orientation) have to be considered preliminarily. For instance, DEM generation using 

mono-date stereo images over very high and abrupt coastal cliffs (like in Normandy) appeared not to be appropriate, i.e. 

when the satellite is looking backward, only the top and plateau of the cliff being imaged, not the cliff face nor the cliff 

foot. In addition, sun position at the time of image acquisition associated with shoreline orientation may also be 

considered, due to shadow effects that may occur on cliff face and cliff foot. The same effect can be seen in sand beach 

areas (Almeida et al. 2019), where a DEM generated from a Pleiades stereo product can achieve very high vertical accuracy 

(under 0.5m) but this accuracy decreases in dune faces where shadows are produced. 

 

SAR Imagery Algorithms 

To generate DEM data from a couple of SAR images two choices are available: (i) interferometry and (ii) radargrammetry. 

Stereoscopy for SAR data is known as radargrammetry. This technique is similar to optical/photogrammetry, but it uses a 

couple of SAR amplitude images to match homologous points and produce height (Capaldo et al., 2014). Radargrammetry 

produces DEMs with a vertical accuracy of a few meters (worse than interferometry) but is very robust to atmospherical 

conditions. 

Interferometry is a technique that benefits from SAR phase information. In a pair of SAR images, the same object generates 

a signal with a change in phase that is related to a shift in the distance viewer-object. With the appropriate processing this 

change can be mapped to a height (Small et al., 1996). This technique has been already used in coastal areas (Hong et al., 

2006) (Choi et al., 2007), achieving a vertical accuracy close to 1 meter. Anyway, it is a very sensitive technique that could 

be affected by different factors as atmosphere conditions, loss of coherence (due to changes on surface conditions). 

Interferometry is a technique that cannot be used always. Phase information is very sensitive to changes, and variations 

in a surface can completely destroy phase coherence making DEM extraction impossible. This is the case in vegetation 

areas, where coherence falls due to continuous “growing” of the observed object. In these cases, a combination of 

interferometry and radargrammetry can be used. This approach has been already tested on coastal areas (Yu, 2011) 

(Nikolakopoulos et al., 2015). 

Simultaneous data acquisition using a pair of satellites flying closely in formation is the challenge unravelled by DLR with 

the twin SAR interferometry TerraSAR-X / TanDEM-X mission. The mission provides digital elevation data at 12-m full 

resolution and with an absolute vertical accuracy of 1 m. Airbus DS and CSTARS has recently launched the commercial 

“WorldDEM Ocean Shoreline” product based on TanDEM-X which is supposed to provide an up-to-date reference for 

coastal issues at global scale (applications in glaciology, see Milillo et al., 2019 ). 

 

 

https://en.wikipedia.org/wiki/Polynomial
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 Algorithm 1a – DEM generation from optical data 

3.1.3.1 Algorithm description  

• Input data 

According to the software used different sets of optical satellite images can be used for DEM production, including: 

• VHR (or HR) optical imagery acquired in stereo or tri-stereo mod, e.g. Pleiades (or SPOT5) 

• pair of non-georeferenced VHR (or HR) optical images acquired at subsequent dates with a temporal spacing 

relatively small with respect to the characteristic temporal scales of the coastal change studied.  

Ground Control Points. 

• Algorithms 

We propose two algorithms for DEM extraction from optical data. 

1. The first one is the algorithm proposed by Li and Gruen (Li Z., Gruen A., 2004). This algorithm performs these 

steps: 

• Image pre-processing: edge-preserving filtering and Wallis filtering are applied to images in order to reduce 

radiometric artefacts (very dark and bright areas) and enhance texture patterns in regular areas. 

• A pyramid of images is generated reducing image scale at each level, then starting from lowest resolution 

we apply these steps at each level in a cascade: 

o Feature point matching: feature points generated using Foerstner interest operator and matching 

done by a geometrically constrained cross-correlation method (Gruen, Zhang, 2003). Edge-

matching: edges generated by the Canny operator are matched using a shape matching method. 

o Grid point matching: a regular grid of points is matched using a global image matching method with 

a relaxation technique (Gruen, Zhang, 2003). 

• A final refined matching based on the modified MPGC (Gruen, 1985) is performed in order to achieve 

accuracy in the subpixel range. 

2. The second algorithm, performs the following steps: 

• Image Orientation: A bundle adjustment with RPCs model and with the use of GCPs during this computation 

is be performed. 

• DEM generation method: It is based in the use of two families of matching methods: 

o Feature Based Matching (FMB): FBM is a matching strategy that is very robust. It only needs coarse 

approximations and is very fast. It has an accuracy of about 1/3 of a pixel. The matching process 

computes interest values in two images of a matching pair that describe the appearances of 

features. The matching process determines common features in the pair by means of the computed 

interest values. 

o Least Squares Matching (LSM): LSM is a matching strategy that is very accurate, but better 

approximations are required, and it is considered rather slow in comparison to FBM. It is mostly 

used to refine points obtained from FBM. The accuracy is about 1/10 pixel. The matching process 

uses a mask created from one image and a template from the second image at a previously 

matched point. The mask is shifted on the template until the sum of squares of the gradients is 

minimized. 

• Tools 

ENVI + OPTICALscape (implementing first algorithm) 

ArcGIS-ESRI, QGIS, DTMaster stereo, INPHO Photogrammetric Suite by Trimble (implementing second algorithm) 

• Output product 

• Raster file output: “*.geotiff” 
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Figure 3-1 - DEM produced from Very High-Resolution optical stereo satellite imagery (Pleiades, Terra Spatium, ©2016) 

• Vector file output: Point cloud file “*.las” 

 

Figure 3-2 – DEM - Point cloud produced from Very High-Resolution optical stereo satellite imagery over cliff area (Pleiades, 
Terra Spatium, ©2016). 

 

3.1.3.2 Validation 

The deployed algorithms have several times been validated during commercial and research projects executed by Terra 

Spatium, for areas all over Greece. The algorithms have been tested both in coastal, as well as in-land and mountainous 

areas, covering all types of morphologies. In these projects, VHR optical satellite data were used to produce DEMs, in 

particular stereo Pleiades and Geoeye-1 imagery, while computations were performed with the use of Ground Control 

Points (GCPs). GCPs were collected during in situ GPS survey (Real Time Kinematic, L1/L2 frequencies) with a mean 

horizontal accuracy 2-3 cm. On the same time a set of independent points were collected the so-called Check Points (CPs) 

and used for validation of the produced DEMs. Usually a set of CPs, evenly distributed along the AOI were chosen, trying 

to cover the specificities of each region, for every stereo-pair at least 7-8 CPs were collected. At the end of the day, a 

relative horizontal accuracy of 1 meter and a relative vertical accuracy of 2-3 meters, was achieved in most cases. 

In the framework of Space for Shore, a validation campaign will be carried out to assess DEMs production in Greece based 

on in situ GPS measurements. This field work will take place in late-September 2019, mid-October and could be combined 

along with the validation activities for 4.2.6.2 (Algorithm 2d – Water Line Detection using binary products from SAR 

amplitude data). 
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Reference projects: 

1. BEACHTOUR National R&D project: A synergy for the sustainable development and safety of the Hellenic Tourist 

Beaches for the identification of ‘best practices’ in science-driven beach monitoring, management and decision-

making. (2013-2016). 

2. ACRITAS National R&D project, Space Technologies for Surveillance and Monitoring of Integrated Applications: 

research, design, develop and validate integrated space-based surveillance and monitoring applications through 

advanced multi-sensor data fusion technologies. (2013-2016) 

3. Commercial project (National Cadastre & Mapping Agency) Production of VHR ortho-photomaps and DEM along 

the coastline of Greece. (2007-2009) 

3.1.3.3 Application range and Maturity 

The maturity of the deployed algorithms is considered high, while in order to achieve a high accuracy, Ground Control 

Points (GCPs) are needed for the computation of the aerial triangulation. The GCPs could be acquired, either directly, 

through in situ GPS measurements (L1/L2) or indirectly, extracted from pre-existing orthophoto maps of a similar accuracy. 

Of course, when direct GCPs measurements are being used a better accuracy is achieved at the end of the day, i.e. with 

measurements deriving from a robust computation with GPS equipment using L1/L2 frequencies. In cases that VHR 

satellite optical imagery (e.g. Pleiades) is used along with GCPs (measured on the ground) the relative vertical accuracy 

achieved is around 2-3 meters. 

 

 Algorithm 1b – DEM generation from SAR data 

3.1.4.1 Algorithm description  

In order to perform calculations between two SAR images, a previous co-registration must be done to have both images 

in the same geometry (Meijering, Unser, 2004).  Shift between images is first estimated using sensor position and orientation 

metadata, then a cross-correlation approach is used for fine-shifting. The complete schema can be found in the figure 

below. 

 

Figure 3-3: Workflow for the co-registration of a pair of SAR images for DEM pre-processing 
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Once The coregistered SLC (Single-Look Complex) data are used to compute an interferogram, which is obtained by 

multiplying the first complex image by the conjugate of the second one. The interferogram provides an image of phase 

changes that are due to different effects (Monti Guarnieri, Guccione, Pasquali, Desnos, 2003). 

Interferogram is “flattened” to remove the constant phase effect produced by acquisition geometry and the topographic 

phase effect produced by terrain slope. In order to flatten the interferogram, a low-resolution DEM (as SRTM) is used to 

estimate terrain slope. 

Once flattened, an adaptive filtering is applied to reduce noise and coherence image is generated (Baran, Stewart, Kampes, 

Perski, Lilly, 2003). Coherence is a parameter that measures correlation between master and slave acquisitions. Only areas 

with a high coherence value can be used in DEM computation. 

At that point the phase information, which is cyclical, should be unwrapped to provide a linear change. This unwrapping is 

done using a minimum cost flow method (Reigber, Moreira, 1997). 

Before converting phase change to height, a reflattening step is performed using ground control points to remove phase 

offset and phase ramp. Once removed phase change is converted to height (Göblirsch, Pasquali, 1996). 

• Input data 

o Pair of SAR SLC data captured on interferometric conditions using VHR (e.g. TerraSAR-X) or HR (Sentinel-

1) 

• Algorithms 

o Master SLC and Slave SLC coregistration 

o Interferogram generation 

o Filtering and coherence estimation 

o Phase unwrapping 

o Reflattening 

o Phase to height calculation 

• Tools 

o SARscape 

• Output product 

o DEM in raster (TIFF) format 

 

3.1.4.2 Validation 

The described algorithm has been implemented in SARscape software for several years, and it has been used in different 

commercial projects successfully. Multiple references about algorithm validity and accuracy can be found (Singh et al., 

2005; Yamane et al., 2008; Deo et al., 2014; Pandit et al., 2014). From this last one, we extracted a plot to show the accuracy 

obtained by the algorithm in a mountainous area (Indian Himalayas) using TanDEM-X data, with an RMSE of 8.2 meters 

(Figure 3-4). 
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Figure 3-4: elevation values obtained through DGPS and TanDEM-X DEM for Gangori glacier (0 to 5 – Ground observation 
points) 

3.1.4.3 Application range and Maturity 

The algorithm is mature, as it has been used and tested for years. In general, it can be used to generate DEM in any kind 

of terrain, but high slope areas use to produce shadows and layover effects that reduce coherence and prevent 

interferometry. In these areas radargrammetry can be used to complete DEM. 
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3.2 Algorithms group 2: Water line and creek edge detection 

 Introduction  

Water lines are a key indicator for almost all coastal types. It is relevant for beaches as well as for the morphological 

assessment of intertidal flat dynamics. Therefore, we present here a number of different approaches and may select 

different ones for the different coastal types. The water line indicator is easily retrievable from both optical and SAR data, 

since the water surfaces exhibit radiometric signatures typical and different from other components of the coastal 

environment.  

Although simple to extract, the water line is dependent on the tidal stage and swell conditions. Therefore, to infer relevant 

shoreline positions from the water line, it is necessary to define a cautious strategy for image acquisition. It is 

recommended to use high-tide or low-tide images only during calm weather conditions. Composite images based on time-

series can also be used to minimize the impact of waves and tide. Indeed, in microtidal regions, the impact of tide level 

has a fairly low incidence on the water line location. If the water line is extracted from Sentinel-2 imagery the impact is 

probably marginal. However, it should be considered when using very high-resolution data. 

These strategies must be considered whatever the extraction methods detailed hereafter. 

Indeed, the waterline is a good proxy to identify the middle of the swash zone. In the Requirement Baseline, the middle of 

the swash zone is only required in microtidal regions, where this indicator is expected to be efficiently retrieved from an 

image time-series or from image composites as described below (algorithm 2b).  

 State-of-the-art 

There are several techniques for delineating shorelines for change assessment, however, most studies use 

photogrammetry/satellite data and spatial analysis techniques (Evadzi et al., 2017; Appeaning Addo, Walkden, and Mills, 

2008; Jayson-Quashigah, Appeaning Addo, and Kufogbe, 2013; Vos et al., 2019). Other techniques and data types utilized 

for quantifying beach erosion/shoreline changes includes storm-induced beach change model (Wise, Smith, and Larson, 

1996), Bruun Rule (Bruun, 1962), Hallermeier equation (Hallermeier, 1981), shoreline evolution model (Patterson, 2009; 

Robinet et al., 2018), and shoreline response model (Huxley, 2009).  Although these alternative methodologies to 

satellite/photogrammetry also make use of observations, apart from the reliability of each of the method itself, the 

suitability of the method also depends on the availability, spatial extent, and timescale of data.  

Except for photogrammetry, which records historical coastal changes, the other methods are based on a combination of 

models and data, which are more useful when trying to estimate hazard extent where there is limited historical 

information.   

Although shoreline/coastline definition over the years been debated because of the dynamic nature of coasts (Alves, 2007; 

Bird, 1985; Boak and Turner, 2005), the shoreline definition referred to as the ‘‘wet–dry’’ line, also referred to as the high 

water line, along the coast has been the most widely used definition for shoreline mapping because it can be identified 

both on images and physically in the field (Crowell, Leatherman, and Buckley, 1991; Dellepiane, De Laurentiis, and 

Giordano, 2004).  

https://doi.org/10.1007/s10346-005-0059-z
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Several remote sensing researchers have worked on the topic of coastline extraction, firstly using SAR amplitude (Lee, 

1990; Descombes et al., 1996; Niedermeier et al., 2000; Baghdadi et al., 2004) and then exploring capabilities of InSAR 

coherence analysis techniques (e.g. Schwabisch et al., 2006; Dellepiane et al. 2004; Wendleder et al. , 2013). Albeit of the 

theoretically large backscattering difference in between land (bright) and water (dark), they collectively found noise effects 

(the water surface being frequently wind-affected, and effect of shallow waters) to be quite disturbing for automatic 

waterline extraction, thus exploring several approaches and filtering techniques to improve their differentiation. Another 

option to improve the discrimination water-land would be the use of polarimetric SAR (Wu et al. 2018). SAR images with 

HH polarization seem to be the most appropriate to discriminate coastline. Full polarized data can also be used to perform 

a polarimetric decomposition that will provide information about the degree of volume scattering, surface scattering and 

double bounce found on the terrain allowing a land-water classification (Gurreonero Robinson et al., 2013). Other 

discrimination measures derived from full polarimetric data have been proposed, as correlation between cross-

polarization and co-polarization images, to improve separability land-water (Nunziata et al., 2016). The recently published  

paper by Schmitt et al (2019) addresses the SAR state-of-the-art. Recently, the authors experimented an original TanDEM-

X InSAR mono-static data mode “in pursuit” (both satellites flying with a larger spatial baseline and  temporal baseline of 

10 s) for land-water segmentation with the objective of obtaining denoised information and a better discrimination of both 

amplitude and coherence images. One dedicated case for water line detection is the application in intertidal flats to identify 

the dry-fallen flat surfaces and separate them from tidal creeks. Investigations in intertidal flat areas are based on both – 

optical and SAR data. Differentiation between water areas and dry-fallen intertidal flats is done by band ratios and linear 

spectral unmixing for the German Wadden Sea (Brockmann & Stelzer, 2006). The application of SAR data for the same 

question has been conducted by Gade & Melchiona and also the combination of both techniques, e.g. by Jung & Ehlers 

2014, van der Val 2005.   

 

 Algorithm 2a – Water line detection using band ratios 

3.2.3.1 Algorithm description  

Evadzi et al. 2017, Appeaning Addo, Walkden, and Mills, 2008 and several coastal researchers argue that not only does 

band combination of satellite images provides the best atmospheric penetration and helps visualize Coastlines and shores 

but also by the application of band ratios helps to delineate shorelines along with the Wet-Dry line definition.  Evadzi et 

al., 2017 extracted historical shorelines for change assessment in Ghana, by performing Landsat data resolution 

standardization, histogram threshold and automatic shoreline extraction using ENVI classic software to separate the land 

and water based on band ratios (b2/b5 for Landsat 5 data).   

The proposed algorithm is focused on band ratio and histogram threshold. This is applied to Sentinel-2 and Landsat-8 data; 

the later used for validation of the algorithm. The Sentinel-2 data is resampled to 10m whereas the Landsat-8 data is 

resampled to 15 m after conversion of the data’s at-sensor radiance to at-sensor reflectance values.  

Shorelines generated from Landsat data will not be at the exact location compared to those generated from sentinel-2 

products mainly because of spatial resolution differences. However, the shorelines generated from both sources (based 

on the same expression) must represent the exact wet-dry lines that can be observed on the respective images as well as 

on the field.   

Because of this capability, long term change detection can be computed using several data sources if the uncertainties 

such as positional/tidal changes accuracy, digitization uncertainty (e.g. if derived from orthophotos), as well as image 

resolution uncertainties, can be measured and applied as weights to the shorelines before the computation of change 

rates (Evadzi et al., 2017). 

• Input data 

Sentinel-2 and Landsat-8 products were used for the delineation of the shoreline based on the water-line definition and 

band ratio approach explained above. 

• Algorithms 

o Conversion of Landsat-8 product’s at-sensor radiance values to at-sensor reflectance values.  
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o Resample Sentinel-2 product to 10m and Landsat-8 to 15 m.  

o Compute the Wet-Dry Line from Sentinel-2 using the bands math (b8/b2), and the corresponding bands 

(band5/band2) to compute the shoreline for the Landsat-8 product.  

o Threshold for shoreline (1 >= Wet-Dry Line >= 0.9). This threshold is identified to be a good threshold 

for delineation of the shoreline as it does not only delineate the wet-dry line (Figure 3-5) but also 

minimizes the selection of mixed pixels that do not reflect the wet-dry shoreline (Figure 3-6; '0.5 <= 

shoreline (more mixed pixels) <= 0.9').  

o Preform Arithmetic Mean 3x3' to smoothing the shoreline.    

o Polygonization of the mask to generate vector data. 

• Tools 

SN SNAP, QGIS, ArcGIS, DSAS 

• Output product 

Figure 3-6 shows shoreline extracted from sentinel-2 images after the water-line definition and band ratio approach 

explained above. 

 

Figure 3-5 - Automatic shoreline delineation from Sentinel-2 Image (data ref. date: 08-04-2019). 

 

Figure 3-6 - The impact of thresholds on shoreline delineation from Sentinel-2 Image (data ref. date: 25-04-2019). 
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3.2.3.2 Validation 

The application of the algorithm (with the same threshold) works well for the generation of the wet-dry shoreline on both 

Sentinel-2 and Landsat-8 products. This is also expected to work for other satellite products that have similar 

corresponding bands. Figure 3-7 shows the delineated shoreline from Landsat-8 plotted on Sentinel-2 RGB image and 

shoreline for the same period. Although the Landsat-8 shoreline aligns with the Sentinel-2 shoreline at some places, there 

are slight shifts at some areas. This is expected mainly as a result of product resolution differences. If different products 

are to be used for historical rate of change computation, it is therefore important that the uncertainties must be accounted 

for and applied as weights to the respective shorelines. 

 

Figure 3-7 - Different shorelines extracted from 2 sentinel and Landsat8 products (18/19-04-2019). 

3.2.3.3 Application range and Maturity 

Coastal areas are very dynamic and are affected by climatic, geological, changes in the supply of sand to the coast, and 

anthropogenic factors. Extreme events to seasonal changes including cloud and foreign objects over the shoreline can 

significantly influence the delineated shoreline. Figure 3-8 shows the likely impact of the aforementioned factors on the 

shoreline delineation at the shores of Kiel. Several publications reported a similar challenge for the delineation of the wet-

dry line for deltaic regions because of how dynamic these regions are. Care must be taken when selecting a shoreline to 

generalize for a month. 

 

Figure 3-8 - Different shorelines extracted from 2 sentinel images for 04-2019. 
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 Algorithm 2b – Water line detection using NDWI 

The NDWI is the indicator chosen to localize the shoreline on a worldwide scale. The method is described by Luijendijk et 

al. (2018), it has been implemented, tested and validated by DeltaRes researchers in order to describe the state of the 

world’s beaches, in particular to estimate shoreline change rates for the 33-year period 1984–2016. 

3.2.4.1 Algorithm description  

• Input data 

The approach has been tested and validated for Landsat-8 and Sentinel-2 data.  

• Algorithms 

For dynamic shoreline detections, the authors recommend building yearly composites images generated by the 15% 

reflectance percentiles per pixel (Hansen et al., 2013). Optimal averaging period is of 192 days. Analysis of the composite 

images significantly decreases the influence of the tidal stage on the detected shoreline positions and averages out 

seasonal variability in wave and beach characteristics.  However, it does not remove the effect of tide and wave, so change 

analysis has to be performed cautiously or, at least, on long term trend. 

The resulting composite images are used to estimate the Normalized Difference Water Index (NDWI)   

The Canny edge detection filter (Canny, 1986) is used to roughly estimate the position of the water-land transition on the 

NDWI image. Then, the Otsu thresholding method (Otso, 1979) is used on a buffer polygon around the water-land 

transition to identify the most probable threshold to classify water and land on the image. 

The detected water lines at the edge of the water mask are smoothed using a 1D Gaussian smoothing operation to obtain 

a gradual shoreline avoiding the pixel-induced staircase effect. A value of three gives the best results based on the four 

validation cases; meaning that it takes three cells on both sides during the 1D smoothing. 

This latter approach can be used to improve the vectors extracted from classified images, DEM etc … .   

• Tools 

The tools will be implemented by consortium members. 

Image processing tools used are either implemented on most image processing software. Alternatively, they can also be 

found in OpenSource libraries. 

• Output product 

Results carried out for shoreline extraction and shoreline change with time is shown in Figure 3-9. 

Vectors in shape format (or kml/kmz) are delivered. 
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Figure 3-9 - Examples of the satellite derived shorelines for four selected cases of beach erosion and accretion due 
to human interventions (from Luijendijk et al., 2018) 

3.2.4.2 Validation 

Soundful validation conducted along 63 km of coastline and spanning over 13 years of Landsat images is given by (Luijendijk 

et al., 2018). The mean offset for all transects between observations and SDS is 2.0 m with a RMSE of 17 m. 

3.2.4.3 Application range and Maturity 

This approach with regards to water line extraction and borders between classes is considered as mature, as it has been 

applied on a worldwide basis. It applied to all sandy shorelines, whatever tidal range and wave exposure. 
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 Algorithm 2c – Water line detection using a supervised classification process 

3.2.5.1 Algorithm description  

• Input data 

The algorithm needs an HR or VHR optical image as input data. Application of atmospheric correction to the image in a 

pre-processing step is recommended but not mandatory. 

• Algorithms 

The detection of the waterline is made using an algorithm based on supervised classification (all details are provided in 

Section 4.5.3) that differentiates water pixels from others located in the subaerial domain. The implementation of the 

classification process chain is relatively simple and requires only a single HR or VHR optical image. First, polygons 

representative for the two typologies addressed must be digitalized to build the reference database. Then, the 

RandomForest classifier is applied to the spectral bands of the image but also on band ratios (e.g. NDWI) to enhance the 

water/land discrimination. This step is followed by a spatial regularization of the class contour to remove some noise and 

isolated pixels. The final step consists in extracting the interface between the two typologies from the raster-formatted 

classification output. 

• Tools 

The algorithm uses python programming languages with support of Orfeo ToolBox and GDAL libraries.  

2. Output product 

The output from this algorithm is a vector of waterline positions. 

3.2.5.2 Validation 

No soundful validation with ground-truth data has been performed yet. The detection accuracy is expected to be of the 

order of the pixel resolution of the input image.  

3.2.5.3 Application range and maturity 

Any environmental conditions affecting the spectral signature at pixels along the waterline such as clouds, shadows and 

breaking waves may lead to significant spatial error in the waterline location. The algorithm can be applied for any water 

level (tide + storm surge + wave setup) and any types of geomorphology. However, larger errors in the waterline detection 

may occur for gently sloping foreshore (intertidal areas) experiencing large tidal range, as the buffer area between the 

water and the subaerial domains may exceed the image pixel resolution. It must be reminded that intercomparison 

between subsequent image-derived waterlines is often tricky as the actual water level at the date/time of image 

acquisitions may have varied. Although not fully automated, the maturity of this algorithm is high. 

 

 Algorithm 2d – Water line detection using binary products from SAR amplitude data 

3.2.6.1 Algorithm description  

SAR data are known to extract water detection regardless of weather conditions because they transmit microwaves 

(Pradhan et al, 2018). Land and especially man-made objects have a strong back-scattering. In addition, due to the 

instability of the water surface, SAR images have low amplitude and low coherence. Finding the perfect threshold will 

result a map which shows waterline detection. Using both geometries we can extract stronger results. 

• Input data 

• Pairs of SAR GRD Sentinel 1A & 1B scenes or from ERS1/2 SAR or ENVISAT ASAR acquisitions. 

• Algorithms 

• Subset 

• Apply orbit file 

• Calibration 

• Speckle filtering tool 
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• Math band 

• Geometric Correction: Range Doppler terrain correction 

• Tools 

• Snap by ESA 

• ArcGIS 

• Output product 

• Map of waterline detection 

3.2.6.2 Validation 

This algorithm will be validated with field work in collaboration with a coastal erosion expert from Harokopio University of 

Athens as well as with civil protection authorities. Focusing on coastal erosion, field work will take place in order to validate 

the results obtained by SAR data processing. In addition, the team will be equipped with GNSS instruments. We will use 

high resolution optical data to validate the results obtained by SAR data. This field work will take place in late-September, 

mid-October. The horizontal accuracy is expected to be in the order of the resolution of the input image. 

3.2.6.3  Application range and Maturity 

Using SAR data, we will be able to use indices for land/water detection, and thus monitor coastal changes due to erosion. 

The data that will be used are independent from weather and atmospheric contribution. The indices that will be chosen 

are widely used, thanks to the rich archive from SAR applications on coastline detection. Only minor is the spatial 

resolution, which is not very high, but validation data will help us evaluate our results. 

 

 Algorithm 2e – Edge detection tidal creeks using SAR 

3.2.7.1 Algorithm description  

This algorithm is based on dual-co-polarization TerraSAR-X imagery. It uses the ‘Polarization Coefficient’, or Normalized 

Difference Polarization Ratio, that highlights differences in the radar backscattering from exposed intertidal flats and open 

water bodies at both radar co-polarizations. Primarily, this algorithm was developed to generate indicators for bivalve beds 

on intertidal flats, and it turned out that the results can also be used to infer the borders between tidal creeks (or channels) 

and open water. After the Polarization Coefficient was calculated on a pixel-by-pixel basis, basic statistical operators are 

applied in a moving window (of typical size 11 pixels by 11 pixels, while the exact dimension depends on the spatial 

resolution of the SAR data). Typical results for a test site on the German North Sea coast are shown in Figure 3-10. This 

algorithm will be improved and further developed to enable for a high-resolution detection of the rims of tidal creeks. 

 

Figure 3-10 - Spatial statistics of the Polarization Coefficient derived from TerraSAR-X SAR data of exposed intertidal flats 
behind Amrum island on the German North Sea coast acquired in 2013. Green colours indicated exposed flats, yellow and 
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orange colours indicate tidal creeks and channels and flat areas covered by remnant water. Blue colours indicate bivalve 
beds. From Gade & Melchionna (2016). 

Higher precision of the results obtained will be gained through a combination of multi-acquisition SAR imagery. Areas of 

high spatial morphodynamics will be identified through the application of new operators on multiple maps of Polarization 

Coefficient statistics. 

This algorithm will also be tested with images from ENVISAT SAR acquired at both co-polarizations, pending the availability 

of such data at targeted POC sites. 

• Input data 

Dual-co-polarization SAR imagery  

• Algorithms 

The algorithm’s basic steps include: 

3. Georeferencing 

4. Calibration 

5. Calculation of the Polarization Coefficient 

6. Spatial statistical operations 

7. Threshold optimization for the indication of tidal creeks 

• Tools 

The algorithm uses ESA’s SNAP Toolbox. Basic algebraic operations can be included using Python. 

3.2.7.2 Validation 

The validation of the results will be based on either data from aerial surveillance and in situ campaigns, or a combination 

of both. A validation will be performed during the POC and also the applicability for coastal erosion will be conducted. The 

accuracy is expected in the order of the resolution of the input image. 

3.2.7.3 Application range and Maturity  

The algorithm can be applied to SAR imagery of any exposed intertidal flats, independent of their location. Its application 

to SAR data of cliffs and sand beaches needs to be examined. Maturity is Level 1. 
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3.3 Algorithms group 3: Extraction of subaerial morphological structures and changes 

 Introduction 

This section presents algorithms that are used to compute key indicators useful to assess the morphodynamics of different 

subaerial areas along the sandy and rocky coasts and to mitigate risks related to erosion processes. Attractive coastal areas 

are usually well urbanized with the building of expensive seafront, facilities and houses on top of coastal dunes and cliffs. 

Monitoring the dunes foot and the main cliff lines (foot and apex) is crucial for coastal stakeholders to anticipate the impact 

of erosion that can damage seriously these infrastructures and threaten the safety of coastal users. The knowledge of the 

beach width is also essential for coastal municipalities as it provides an indication on the recreational potential and 

attractiveness of their coastlines. This indicator is therefore often included in beach nourishment strategy. Although less 

widespread in end-user practices, the tracking of unusual and sudden low-amplitude vertical movements on top of cliff 

can also indicate a ground instability and warn of a likely and future landslide usually associated with dramatic impacts if 

not anticipated. The study of ground vertical movements on longer timescales (> annual timescale) can also reveal the 

existence of trends of gradual downward settling of the ground surface, called subsidence. Within deltaic environments 

this ground process, which can reach several centimetres per year in some places, leads to a continuous coastline retreat 

and higher exposure to marine flooding.  

 State-of-the-art 

Linear features (dunes foot, cliff lines) extraction in coastal areas can be made following different approach. The simpler 

strategy relies on manually digitizing polylines (Hapke and Reid, 2007) from raw images, processed image where features 

are enhanced, DEMs or even combination of DEMs and images. The main advantages of this method are that: (i) it can be 

performed using only basic tools from GIS software; and (ii) the operator digitizing the linear features can identify possible 

source of error and take a decision based on ground-truth knowledge that is sometimes nearly impossible to automate; 

(iii) the outputs of the digitizing procedure are directly polylines and no post-processing is required before delivery to end-

users. However, this approach includes some limitation. First, the operator requires an accurate knowledge of the study 

site to avoid subjective decision in digitizing (e.g. when the dune foot line starts be blurred due to accretion processes that 
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sometimes occur). Second, this approach is really time consuming. While manually digitizing lines for few images is rather 

acceptable with production times expected to be of some hours to days, applying this procedure to a high number of dates 

and sites becomes totally inefficient. 

To overcome these limitations, scientists and companies tend to develop automated tools (e.g. Hoeke et al., 2001; Brzank 

et al., 2005; Zarillo et al., 2008; Liu et al., 2009; Lafon et al. 2010, 2014). However, some manual and site-specific operations 

are always necessary because of the high variability in shape and characteristics of coastlines worldwide. These manual 

operations included in these so-called semi-automated algorithms allow calibrating some coefficients used at different 

steps of the algorithm (e.g. kernel size for computing textural parameters, characteristic length scale of the dunes and 

cliffs present in the image or DEM, thresholds on metrics of ground slope or on texture or on reflectance). 

To the author knowledge, there is no published references specifically dealing with coastal dune foot line extraction from 

satellite imagery, apart from the work of Lafon et al. (2014) based on texture metrics, and also method based on 

multispectral image classification (Lafon et al., 2010; Roche et al., 2014). The dune foot is usually defined as the abrupt 

increase of slope observed at the transition between the upper beach (landward the berm) and the dune front (Boak and 

Turner et al., 2005; Toure et al., 2019). This cannot be detected directly from a satellite image. However, the transition 

between the beach and dune area is also marked by changes in surface reflectance and texture. Over the beach, the image 

reflectance is usually high and homogeneous while landward the dune face the reflectance can be lower and more 

heterogenous due to presence of vegetation and local shadows that typically appear in dune fields. The foredune face can 

also present a different spectral signature and typology compared to the upper beach. While extraction of a dune foot 

proxy from texture metrics requires VHR optical image, extraction from results of classifications applied to image 

reflectance signature and band ratios can also rely on HR image. 

Studies focusing on coastal variability and in particular on the dunes system usually uses DEM (generated from DGPS or 

LIDAR topographic surveys or from photogrammetry that uses images taken from UAV, plane or satellite) to compute date-

to-date changes in dune volume (e.g. Castelle et al., 2015; O’Dea et al., 2019; Laporte-Fauret et al., 2019). The DEM can 

also be used to extract the dune foot by using a slope threshold calibrated with ground observation (e.g. Nahon et al., 

2019) or by using image processing methods for edge detection within raster of elevation (e.g. Richter et al., 2013). 

Analysing the slope variability in the cross-shore direction, with the search of the location of the first maximal slope 

increase from the upper beach, can also allows us detecting the dune foot (e.g. Le Mauff et al., 2018). However, except for 

coastal dunes suffering regular erosion events leading to a clear and sharp slope break, the transition between the upper 

beach and the dune face is sometimes blurred by sand sliding over the dune face to the dune base (Battiau-Queney et al., 

2003). In that case the dune foot can no longer be represented by a line but more by a 2-3-m wide buffer area (Guillén et 

al., 1999). In case of coastal system undergoing accretion, the dune foot can even not be tracked rigorously, even by field 

works, as several embryo dunes form on the upper beach with vegetation usually developing on the top. These two 

morphodynamic processes represent potential source of errors in the detection of the dune foot from DEM, as only regular 

field works can check their occurrence in time and space. No any reference describing and validating methods for coastal 

dune foot extraction from satellite-image-derived DEM is found in the literature. Nevertheless, as production of coastal 

dune DEMs from optical spatial imagery using photogrammetry shows promising results (Almeida et al., 2019), the 

detection of the dune foot from space based on elevation and slope data appears feasible.  

Detection of cliff lines in coastal areas can be done in similar ways as for the dune foot detection. Seaward the cliff foot is 

usually found find a gently sloping rocky platforms intermittently covered by sand or shingle deposits. Landward the cliff 

foot starts the cliff face, which is essentially characterised large elevation gradients at least an order of magnitude higher 

than those found elsewhere in the coastal area. A large variety of morphologies along the cliff face are observed worldwide 

due to different lithologies and processes involved in the cliff dynamic. The upper boundary of the cliff face, called top, is 

delimited the strong reduction of the ground slope and the start of more morphologically stable areas where vegetation 

and urbanisation can develop. For cliffs relatively steep shadows are usually projected on the cliff face seaward the cliff 

top due to obstruction of sunlight. This occurs when the earth-projected sun location is located landward the cliff top and 

when the sun elevation is lower than the cliff slope. Similar to the dune foot extraction, supervised classifications can be 

applied to extract the cliff lines based on these specificities. However, the success of the classification and the further 

extraction of cliff lines is essentially site specific and requires to identify consistent proxy of these line. Both VHR and HR 

optical images can be used, although extraction based on HR data will allow to detect significant changes within the cliff 
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only if large temporal period are considered (e.g. 10-20 years) or if the cliff change rate are high (1-10 m/year), which is 

rarely the case. 

Several methodologies for cliff line extraction were developed in the last decades relying on LIDAR-derived DEM but using 

different approaches. For instance, Gomes-Pereira and Wicherson (1999) applied image processing tools (mathematical 

operator) on rasterized DEM (elevation grid) to classify image pixels into ‘slope pixel’ or ‘flat pixel’. Then, the cliff lines 

were assumed to be found at the boundary between the two classes of pixels and were identified by checking the 8-point 

neighbourhood of each pixels. Sui et al. (2002) also used image processing method (edge detection with the Canny 

operator) to a LIDAR-derived DEM transformed into a greyscale image. A more geometrically based approach exploiting 

the entire 3D information provided by the LIDAR measurements was addressed by Briese (2004). It consists in fitting planes 

to the 3D point cloud and identifying intersections between two adjacent planes, which locate either the cliff foot line or 

the cliff top line. With the same idea, Brzank et al. (2005) extended this approach by locally fitting a surface described by 

the hyperbolic tangent function to the cliff DEM. Then, geometrical analyses are made on the modelled surface to locate 

the two maxima in surface curvature (one convex and one concave) in cross-shore direction, which corresponds to the cliff 

foot and top, respectively. These methods however may fail with increasing coastal complexity and presence of vertical 

perturbation in the DEM unrelated to the ground elevation such as vegetation and buildings. A different approach was 

proposed by Liu et al. (2009) who exploited directly the elevation data provided by the DEM along a series of adjacent and 

regularly spaced transects oriented perpendicular to the cliff face. They based their approach on the conceptual 

representation of the cliff mentioned above, which is that the variation of the slope along the elevation profile is commonly 

greater at the top and the base of the cliff than anywhere else along the profile. Still using a transect-based approach 

Palaseanu-Lovejoy et al. (2016) introduced a new methodology that resolves easily the detection of the cliff foot and top 

along elevation profiles extracted from LIDAR-derived DEM. It even captures the presence of major irregularities along the 

cliff faces such as terrace that could represent a large source of error using previous methodologies.  

For coastal managers, the beach width (Robertson et al., 2007) usually refers to the cross-shore distance over which the 

beach is most of the time dry and then fully available to welcome recreational activities. For beaches experiencing a micro 

tidal range, the beach width can reasonably be approximated by the cross-shore distance between the upper limit of the 

beach – marked by the dune or cliff foot or the base of defence structures – and the instantaneous waterline or the line 

passing through the middle of the swash zone. For beaches experiencing a larger (macro/mega) tidal range, the use of the 

mean high-water line as the proxy of the seaward boundary of the beach width is more appropriate (Burroughs and 

Tebbens, 2008; Richter et al., 2013, as it would limit the large horizontal fluctuations of this boundary that are associated 

with the daily water level fluctuations. 

Differential SAR interferometry (Massonnet and Rabaute, 1993), allows measurements of land deformation very precisely 

with millimetre resolution. It has various applications in the fields of volcanology, cartography, crustal dynamics and land 

subsidence. By using large stacks of SAR images acquired over the same area, long deformation time series can be analysed 

using multitemporal differential SAR interferometry techniques. These coherent methods exploit either permanently 

coherent Persistent Scatterers (PSs) or temporally coherent Distributed Scatterers (DSs). PSs are typically artificial objects 

that reflect radar energy well such as metal structures and buildings. The PS methods that have been developed include 

the Permanent or Persistent Scatterer Interferometry (PSI). PSI provides a parametric estimation of the 3D location and 

velocity of each PS along the line of sight (LOS) connecting it to the satellite (Ferretti et al., 2000; Ferretti et al., 2001). 

Many such measurements are combined using PSI to produce highly accurate terrain motion maps. In urban areas where 

there is a prevalence of PSs, PSI allows analysis of even individual structures on the ground. The DS methods include 

algorithms such as SBAS. A DS object reflects lower radar energy compared to PSs and it usually covers several pixels in 

high resolution SAR images. These pixels exhibit similar scattering properties and can be used together for deformation 

estimation. SBAS estimates the deformation time series even in rural areas where the density of PSs is low (Berardino et 

al., 2002), such as in low urbanized deltaic environments. 
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 Algorithm 3a – Dune foot extraction using the cross-shore variation of first-order texture metrics 

from VHR optical data 

3.3.3.1 Algorithm description  

• Input data 

Texture analysis apply on very high-resolution optical data where shapes or regular patterns are recognisable. In coastal 

zone, this method has been developed and tested on Pléiades data. The method uses multispectral and panchromatic 

channels. This method is also adapted to WorldView image processing. 

The algorithm needs a VHR optical image acquired over the beach and dune areas. The image of dimensions i lines and j 

columns must be rotated so as to have the coastline nearly aligned with the i-direction and to have the water and supratidal 

domain located in the left and right part of the image, respectively. 

In addition, the algorithm requires two parameters defining the row-wise and column-wise length of the kernel in which 

the texture metrics are computed. 

• Algorithms 

The method is illustrated in Figure 3-11. 

First, the multispectral image is classified to filter out woods and water surfaces. A supervised classification algorithm, 

trained by polygons chosen by the operator, is applied. Classification Trees and Maximum Likelihood classifiers have been 

applied successfully. Polygons are selected on water, foam, woods and sand (bare and covered by vegetation).  

Sand pixels are distributed on the beach and dune. Sand pixels are used to create a mask. Simultaneously, a simple texture 

analysis is applied to the panchromatic channel. First order (occurrence) metrics are calculated (Anys, 1994). The Data 

Range metric is selected. Pixels of the data range image superposed to sand pixels are used for feature extraction. 

Two discontinuities are looked for in the masked data range image. They are iteratively searched for in a 6x3 moving 

window. The window moves from water to woods. The first discontinuity is defined by a threshold characterised on the 

standard deviation value of the data range in the window. This first discontinuity has been defined as the upper limit of 

the landward excursion of tide. Once the threshold is reached the interface location (point) is stored vector file. Then, the 

window continues moving landward and mean and standard deviation of the data range in the window are calculated. 

Two thresholds are defined to determine the location of a second discontinuity characterising the foot dune. The location 

of the second discontinuity is stored. 

Interface locations are further analysed to realign doubtful detection (dots located far away from direct neighbours). 
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Figure 3-11 – Flow chart for due foot extraction algorithm 

• Tools 

Computations can be made using ENVI software and IDL programming language. Supervised classification and threshold 

definitions need operator intervention. 

• Output product 

Two vectors consisting of point are obtained as a result. 

3.3.3.2 Validation  

This detection strategy has been applied along various sandy coasts in France. Foot dune detection has been validated by 

GPS surveys. Validation consists of 6057 individual measurements realized on the dune foot only. The error bar of field 

surveys is of 5 m on average (operator effect). It has been established that almost 70% of the Pleiades-based foot dune 

detection is better that 5 m (Lafon et al., 2014). Remaining errors should be corrected manually, based on image photo-

interpretation. 

3.3.3.3 Application range and Maturity  

No cloud nor shadow must be present within the domain on which the algorithm is applied. In the current state of the 

algorithm, the coastline must be relatively rectilinear, and the image must contain water, beach and dune areas.  

The method has been applied to detect the dune foot over four regions of the French Atlantic coast, one of them being 

located a few kilometers to the north of Biscarrosse POC site (France, Nouvelle Aquitaine region). Also, it has been tested 

along the Mediterranean coast (a 40 km-long coastline to the east of Palavas-les-Flots) to retrieve the middle of the swash 

zone. 

Although these experimentations have shown good a potential, the method must be strengthened and generalized. For 

more complex environment further developments may be required (e.g. removal of rocky patches within the beach area, 
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compatibility with highly-curved coasts). However, with regards to POC, it is considered as mature, but it necessitates the 

calibration of the detection thresholds for each considered image.  

 

 Algorithm 3b – Dune foot extraction based on beach/dune slope from DEM 

3.3.4.1 Algorithm description  

•  Input data 

This algorithm relies on the availability of a digital elevation model (DEM) that includes the dune and the upper part of the 

beach so as to have the dune foot within the DEM. The DEM can be computed from photogrammetry using VHR optical 

images or from interferometry or stereo-radargrammetry using VHR SAR images (see algorithm group 1 Section 3.1). The 

proposed algorithm for dune foot extraction relies on a DEMs provided over a regular mesh. 

The proposed algorithm is expected to require some tuning coefficient that surely will depend on the characteristic 

dimensions of the beach/dune system, such as the average dune height, dune slope and beach slope. 

The proposed algorithm is expected to be able to detect automatically a reference line within the dune system (located in 

between the dune foot and dune apex) used to define perpendicular transects along which the dune foot detection will 

be performed. However, if this part of the algorithm lacks robustness, it may be necessary to provide the reference line or 

the transects for each POC site. 

• Algorithms 

The algorithm has not been implemented and tested yet and the proposed structure may require further improvement. It 

is largely inspired from the transect-based approach of Le Mauff et al. (2018). The main steps of the algorithm are 

presented in Figure 3-12, grey and yellow boxes indicating the main inputs, the sub-algorithms to be developed and the 

algorithm and sub-algorithm outputs, respectively. The overall idea is to detect the location of particular changes in 

beach/dune slope along regularly-spaced transects locally perpendicular to the dune front. Indeed, in presence of high 

coastal dunes a significant increase of the slope is observed at the transition between the upper beach and the dune face. 

For instance, a slope increases from 10 to 47 ° is observed at Cap Ferret beaches (SW France) by Nahon et al. (2019). The 

first main steps of the algorithm is to identify a line approximating the dune face location from which perpendicular, 

regularly-spaced detection transects will be defined. Then, along each of these transect the cross-shore variability of the 

ground slope is analysed. In particular, inflexion points in the slope, which are characterized by the second derivative of 

the elevation equal to zero, are tracked as they might be the best proxy for transitions between gentle beach slope and 

steeper dune face. Here, only tests one real DEMs will allow robust implementation of this critical part of the algorithm. 

Existing methodologies for cliff lines detection will also be used as support for this implementaiton (e.g. Liu et al., 2009; 

Palaseanu-Lovejoy et al, 2016).). 
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Figure 3-12 – Methodology proposed to extract the dune foot line from DEMs 

•   Tools 

Python programming language. 

• Output product 

The output of this algorithm is a vector of dune foot positions such as shown in Figure 3-13.  

 

Figure 3-13 – Example of dune base/foot (red line) and crest (black line) extracted from LIDAR-derived DEM using transect-
based approach and analyses of the slope variability. Extracted from Le Mauff et al. (2018). 

3.3.4.2 Validation  

Not performed yet. The algorithm will be further tested in the POC. The maximal horizontal accuracy is expected to be of 

the order of the DEM resolution, with DEM horizontal resolution usually set to the double of the resolution of the original 

images. Thus, for a DEM perfectly well computed using Pleiades images of 0.5-m resolution the horizontal accuracy in dune 

foot detection would be of the order of 1 m. A lower accuracy is however likely as the image georeferencing of the images 

may not be totally perfect and mainly because slope break extraction from discrete elevation data can introduce errors. 

Thus, the overall accuracy of the proposed algorithm is more expected to be of 2-5 m if used with VHR data.  
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3.3.4.3 Application range and Maturity 

For relatively stable or accreting dunes, the break in the slope at the transition between the beach and the dune becomes 

no longer detectable and vegetation may be even present at the base of the dune foot. In that case, the proposed algorithm 

may fail. An alternative to go on the monitoring of the coastline over the long-term is to take seaward extent of vegetation 

present on the beach, if exists. This is no integrated in the present algorithm. To our knowledge there is no published 

algorithm for automated dune foot detection based on DEM derived from satellite imageries, making difficult to assess 

the feasibility of our algorithm. This method is not compatible with the use of HR images, as the planimetric resolution of 

such EO data are not enough to compute a DEM describing well the beach and dune morphology. The maturity of the 

proposed algorithm is considered as low, though a first implementation within some weeks is likely reachable. 

 

 Algorithm 3c – Cliff line extraction using the cross-shore variation of the beach/cliff slope 

3.3.5.1 Algorithm description  

• Input data 

This algorithm relies on the availability of a digital elevation model (DEM) that includes the cliff face and part of the 

subaerial domains seaward and landward the cliff face so as to have the cliff foot and apex within the DEM. The DEM can 

be computed from photogrammetry or stereo-radargrammetry using VHR optical images or from interferometry using 

VHR SAR images (see algorithm group 1 Section 3.1). The proposed algorithm for cliff foot extraction relies on a DEMs 

provided over a regular mesh. 

The proposed algorithm is expected to require some tuning coefficient that surely will depend on the characteristic 

dimensions of the cliff system, such as the average cliff height and slope. 

The proposed algorithm is expected to be able to detect automatically a reference line following locally the overall cliff 

face orientation that is used to define perpendicular transects along which the cliff foot and apex detection will be 

performed. However, if this part of the algorithm lacks robustness, it may be necessary to provide the reference line or 

the transects for each POC site. 

• Algorithms 

The algorithm has not been implemented and tested yet and the proposed structure may require further improvement. 

The main steps of the algorithm are presented in Figure 3-14 with blue, grey and yellow boxes indicating the main inputs, 

the sub-algorithms to be developed and the algorithm and sub-algorithm outputs, respectively. The overall idea is to detect 

the location of particular changes in slope along regularly-spaced transects locally perpendicular to the cliff face. Indeed, 

landward the sea the beginning of the cliff face is usually characterized by a strong increase of the slope at the cliff foot 

and a strong decrease at the cliff apex. Seaward the cliff foot and landward the cliff apex the slope is weak while in between 

the slope is high while. The first main step of the algorithm is to identify a line approximating the cliff face location from 

which perpendicular, regularly-spaced detection transects will be defined. Then, along each of these transect the cross-

shore variability of the ground slope is analysed. In particular, inflexion points in the slope, which are characterized by the 

second derivative of the elevation equal to zero, are tracked as they might be the best proxy for transitions between the 

different coastal compartments. Here, only tests one real DEMs will allow robust implementation of this critical part of the 

algorithm. Existing methodologies (e.g. Liu et al., 2009; Brzank et al., 2005) for cliff lines detection will be investigated to 

support the algorithm implementation. 
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Figure 3-14 – Methodology proposed to extract the cliff lines from DEMs 

• Tools 

Python programming language. 

• Output product 

The outputs from this algorithm are vectors of cliff foot and cliff apex positions. 

3.3.5.2 Validation  

Not performed yet. The algorithm will be further tested in the POC. As for the dune foot line extraction algorithm the 

maximal horizontal accuracy is expected to be of the order of the DEM resolution, with DEM horizontal resolution usually 

set to the double of the resolution of the original images. Thus, for a DEM perfectly well computed using Pleiades images 

of 0.5-m resolution the horizontal accuracy in dune foot detection would be of the order of 1 m. A lower accuracy is 

however likely as the image georeferencing of the images may not be totally perfect and mainly because slope break 

extraction from discrete elevation data can introduce errors. 

3.3.5.3 Application range and Maturity  

Coastal cliffs within Europe present a great variety of shapes in both the horizontal and vertical directions making nearly 

impossible to have a single automated algorithm applicable to all cliff geometries. Here, the proposed algorithm will be 

developed essentially for cliffs of simple geometry (e.g. relatively straight in top view, low ground slope seaward the cliff 

foot and landward the cliff top, no multiple detachments of the cliff in the cross-shore direction). The proposed algorithm 

also assumes that the cliff foot is always located seaward the cliff apex, which is not always true as for cliffs made of hard 

materials and suffering rapid wave-induced erosion at their base. In case the sea is directly in contact with cliff face within 

the EO data used to compute the DEMs, the cliff foot line detection with the proposed algorithm is no longer possible. 

Instead the line of contact between the sea and the cliff face may be a relevant proxy of the cliff foot line. The detection 

of the cliff apex is still possible as long as the cliff face (in contact with the sea) covers several meshes within the DEM. The 

maturity of the proposed algorithm is considered as low, though a first implementation within some weeks is likely 

reachable. 
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 Algorithm 3d – Manual linear feature extraction from DEMs (3D digitization) 

3.3.6.1 Algorithm description 

Photogrammetric techniques have been used in the past for accurate 3D reconstructions/reconstitutions and specifically 

for extracting 3D point coordinates (X, Y, Z) as well as 3D lines. For this purpose, the appropriate stereo pair must be 

available, while the extraction is a point-by-point process which in the past used to be manual. 

Following the development of analytical stereo-plotters this process became semiautomatic, while nowadays, with the 

availability of digital images and digital photogrammetric solutions, cost-effective almost-automated methods are widely 

offered for any visual-based measuring purpose. Even though, the automation of the photogrammetric production chain 

is almost automated, still human operators are required and they play a major role in the whole process. 

The first step if this is algorithm the restitution of relative orientation of the stereo-model, which is performed with the 

computation of the aerial triangulation/bundle adjustment. In the case of VHR optical satellite imagery it is done by 

deploying the RPC coefficients model approach (refer to paragraph 4.1.1). 

• Input data 

Vector file output: Point cloud file “*.las”. 

• Tools 

DTMaster stereo, INPHO Photogrammetric Suite by Trimble. 

ArcGIS-ESRI, QGIS. 

• Output product 

Vector file output: “*.shp”, “*.dxf”. 

 

 

Figure 3-15: DEMs generated by VHR optical data, time series 2007-2009 over cliff areas. Manual Linear Feature Extraction 
(breaklines) from DEMs along with difference model 2007-2009 (low: erosion, high: accretion) (Terra Spatium, ©2016). 

3.3.6.2 Validation 

The results of algorithms are being validated through in situ GPS measurements, for this reason points lying on cliff foot 

and apex are being collected through an on-the-field survey, with an accuracy of 2-3cm. These collected points are being 

compared with their homologous points identified on the 3D extracted lines. Of course, this set of points is being identified 

in order to anticipate project and area specificities. According to past commercial projects executed by Terra Spatium, that 

exploit VHR optical data, an accuracy of 3-4 times the pixel size is being reported. 
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In the framework of Space for Shore, the cliff lines produced within the Greek test sites, will be validated with in situ GPS 

measurements during a land survey. This field work will take place in late-September 2019, mid-October and could be 

combined along with the validation activities for 4.2.6.2 (Algorithm 2d – Water Line Detection using binary products from 

SAR amplitude data). 

3.3.6.3 Application range and Maturity 

The maturity of the deployed algorithms is considered high, while in order to achieve a high accuracy, Ground Control 

Points (GCPs) are needed for the computation of the aerial triangulation. In cases that VHR satellite optical imagery (e.g. 

Pleiades) is used along with GCPs (measured on the ground) the relative vertical accuracy achieved is around 2meters. 

 

 Algorithm 3e – Beach width computation 

3.3.7.1 Algorithm description 

• Input data 

This algorithm requires several inputs: 

- A reference line that is used to compute the beach width. This reference line can be the foot of the dune, cliff or 

coastal defence or any other line meaningful to end-users. 

- A water line that is used to compute the beach width. This waterline can be extracted from optical or SAR HR/VHR 

images. 

- The tide level at which the end-user wants the beach width to be computed. For instance, some end-users will 

prefer to know the beach width at high tide to assess the recreative potential of their beach. 

• Algorithms 

Roughly, the beach width is computed as the distance between a reference line denoting the foot of either the dune,  or 

the cliff, or a defence structure and the waterline computed at low tide (total beach width), high tide (upper beach width) 

or using a time-averaged waterline (mean beach width in microtidal environment). Waterline is detected using algorithm 

of group 2 (refer section 3.2). For instance, along sandy coast experiencing large tidal variation the beach width will 

correspond to the distance between the dune foot and the waterline at high tide such as shown in Figure 3-16. This 

distance will be computed along transects perpendicular to the reference line and regularly spaced (10 – 100 m). An 

alongshore interpolation of the beach width may be required to produce a more continuous data. In area with microtidal 

environment the middle of swash zone appears as the best proxy of the waterline to compute the mean beach width.  

 

Figure 3-16 – Schematic view of a typical beach elevation profile (cross-shore view) along sandy coasts where the beach 
width definition is indicated. The 0.8-m water level use to define the shoreline position correspond to the highest water 
level resulting from tide effect. Extracted from Burroughs and Trebbens (2008).  

• Tools 

Python, QGIS, DSAS (?) 
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• Output product 

Shapefile containing the reference line and the corresponding beach width along that line. 

3.3.7.2 Validation  

This algorithm has not been tested and validated yet. The horizontal accuracy of this algorithm is conditioned by both the 

accuracy of the waterline and the reference line. In case the reference line is provided by the end-user (no spatial error) 

and not derived from satellite imagery, the accuracy reduces to the accuracy of the water line extraction algorithm, which 

usually is of the order of the image pixel resolution (sub-metric to pluri-metric). 

3.3.7.3 Application range and Maturity  

The algorithm has not been implemented and tested yet. The maturity is then very low. However, the implementation of 

the algorithm will be quite straightforward without many specific cases. This algorithm will apply to any beaches (e.g. 

sandy, shingle) as long as the waterline can be extracted from optical of SAR images.  

 

 Algorithm 3f – Top-of-the-cliff vertical movement monitoring using PSI 

3.3.8.1 Algorithm description  

• Input data 

The algorithm uses essentially SAR SLC Sentinel 1A and 1B scenes. 

• Algorithms 

Persistent scatterer interferometry (PSI) is a widely used method to monitor slow movements due to tectonics, subsidence, 

landslides etc. This method detects deformation rates, in linear and non-linear scale. The Interferometric Point Target 

Analysis (IPTA) will be applied using a dataset of more than a hundred SLC S1A and S1B scenes, using a single reference 

point. Persistent scatterers are detected on man-made structures mostly, which is most valuable in order to monitor 

possible subsidence in coastal inhabited areas. This algorithm will be mainly applied to coastal areas presenting coastal 

cliffs. The main steps of the algorithm are: 

- Subset 

- Amplitude 

- Reference point selection 

- Atmospheric phase removal 

- Persistent scatterer selection 

• Tools 

GAMMA-IPTA, Sarproz 

• Output product 

Deformation maps on top of cliffs showing line-of-sight movement. 

3.3.8.2   Validation  

 The algorithm has not been properly validated yet on coastal cliff. 

3.3.8.3   Application range and Maturity  

Maturity of the algorithm is intermediate, as preliminary tests are currently performed along with ongoing improvements 

of the whole processing chain.  
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 Algorithm 3g – Intertidal creek morphological characteristics 

3.3.9.1 Introduction 

The characterisation of the intertidal flat morphology is one aspect to investigate the changes and erosion patterns in this 

very dynamic ecosystem. The creek heads and edges react very fast on changing sediment types and can show first 

tendencies of erosion processes. Within this project it is envisaged to combine existing classification methods (Müller et 

al. 2016) with new ideas for the retrieval of an indicator for the tidal creek morphology. 

3.3.9.2 State-of-the-art 

 A classification scheme for intertidal flat monitoring is currently implemented (see chapter 3.5.5) for the general overview 

on inertial flat habitats. Some of the optical indicators that are used for this classification shall be investigated for their 

ability to characterise the intertidal creek headings. Beside this optical approach, also SAR data have been analysed for 

spatiotemporal trends in intertidal bedforms, e.g. by Adolph et al. 2017 or Gade & Melchionna et al. 2016. 

3.3.9.3 Algorithm description 

This experimental algorithm shall provide information about the structure of tidal creek heads. It will use spectral 

indicators that used to characterise the sediment of intertidal flat areas and that is derived from linear spectral unmixing. 

The higher the spatial resolution the better as the structures can be very small scale. After identification of the creek 

endings, a transect will be used for detecting the deeps and heights of the creeks, which are mainly characterised by 

differences in brightness. Directional filters are applied in order to highlight the linear structures of creeks (Figure 3-17). 

 

Figure 3-17: Band combination from S-2 bands for enlighten tidal creek heads (left) and directional filter (right) 

• Input data  

Sentinel-2 and VHR acquired during low tide. 

• Algorithms 

Linear Spectral Unmixing for retrieving water covered and dray fallen tidal flats and sediment differences. 

Transects perpendicular to the tidal creek heads will provide profile information about sediment changes. 

• Tools 

SNAP, tabulated data analyses such as Excel 

• Output product 

Transect plots 

3.3.9.4 Validation 

The algorithm is experimental and will need testing during POC.  
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3.3.9.5 Application range and Maturity 

It is envisaged to test it on different small regions in order to find out if the information is sufficient for the user 

requirements. In this stage of the development, many manual steps will be needed, and the algorithm is not mature, yet. 

 

 Algorithm 3h – Dune foot extraction using supervised classification 

3.3.10.1 Algorithm description 

• Input data  

This algorithm is designed to work with HR multispectral images, although its relevance depends on (i) the average change 

rate and (ii) the duration of the temporal window addressed.  

The slower the dune transition move and the shorter the temporal window is, the higher the resolution must be. For 

instance, image resolution of the order of 10 m, such as provided by Sentinel-2 and SPOT4-5, is enough to assess the 

coastal dune foot retreat during the past 25 year in SW France where the average retreat rates are larger than 0.5-1/yr. 

• Algorithms 

Supervised classification method (algorithm 5a) is applied to distinguish the beach area made of sand from the dune area 

which is usually covered by vegetation or if not by sand ridge casting shadows around. The most seaward contour of the 

vegetated dune class is taken as the proxy of the dune. Visual inspection of automatically extracted dune foot lines is 

necessary to allow manual correction/digitization in case the classifier fails in some regions of the study domain. 

• Tools 

The algorithm uses bash and python programming languages with support of sci-kit learn, Orfeo ToolBox and GDAL 

libraries. QGIS will be used for visual inspection and digitalization.  

• Output product 

The output of this algorithm is a vector of dune foot positions. 

3.3.10.2 Validation 

The algorithm is experimental and will need testing during POC. However, according to Vos et al. (2019) subpixel accuracy 

can be reached for waterline extraction along sandy beaches based on supervised classification. Here, an accuracy of the 

order of the pixel size is expected as the transition between the dune system and the beach is less clear than for the 

transition between the water and the beach.  

3.3.10.3 Application range and Maturity 

This algorithm should provide accurate results only for coastal areas with well-developed dunes covered by vegetation 

and showing relatively narrow dune face with respect to the image resolution. In case the transitional area between the 

beach and dune system is wide the extracted interface will correspond more to the dune scarp top line. Also, the 

comparison of subsequent dune foot lines will only be relevant if addressing temporal period large enough so that the 

observed changes are larger than the image resolution. While the classification method and diverse regularization methods 

are used routinely, the reference database for this kind of application need to be built by manually digitizing reference 

polygons over a subset of images. The algorithm can be considered as almost mature. 

 Algorithm 3i – Cliff line extraction using supervised classification 

3.3.11.1 Algorithm description 

• Input data  

This algorithm is designed to work with HR multispectral images, although its relevance depends on (i) the average change 

rate and (ii) the duration of the temporal window addressed. HR SAR data can also be used, specifically for the dune foot 

detection. 
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The slower the cliff lines move and the shorter the temporal window is, the higher the resolution must be. For instance, 

image resolution of the order of 10 m, such as provided by Sentinel-2 and SPOT4-5, is may be enough to detect small cliff 

retreat during the past 25 year at Erretegia cliffs (SW France) where large landslides have occurred or along some cliffs in 

Normandy (N France) which are particularly dynamic. 

According to the geometry and surface typology of the cliff studied and according to which lines (cliff top and/or cliff foot), 

the images used in the supervised classification must: (i) contain particular spectral features; and/or (ii) be acquired at 

particular tide level; (iii) and/or be acquired with particular viewing angle and sun elevation.  

For instance, the presence of shadows seaward the cliff top will help detecting the cliff top, while it may prevent form 

detecting the cliff foot. The presence of a ground cover landward the cliff top with spectral signature very different from 

what can be observed on the cliff face and seaward is also crucial. Also, the use of images only acquired at high tide may 

allow detecting the cliff base at some sites where the cliff face is steep and when the satellite field of view is not obstructed 

by the cliff top. 

• Algorithms 

Regardless of the type of cliff line to be detected, a supervised classification method (algorithm 5a) is applied to 

discriminate the different classes of ground cover, the main ones being: water; wet/dry sand/shingle beach; rock; 

terrestrial vegetation; urbanization; mix of vegetation and urbanization; shadow. Then, distinct strategies are used for the 

extraction of cliff foot and cliff top. These extraction strategies are site-specific and can be fully described/implemented 

only once a minimal knowledge about the site is reached and following an analysis of the image dataset to identify what 

are the features consistently present in the images. 

Cliff top: Usually the cliff top line will be located by the boundary between the classes: terrestrial vegetation; urbanization; 

mix of vegetation, and the other classes located seaward the cliff top such as the classes of: water, wet/dry sand/shingle, 

rock. The combination of steep cliff faces oriented in a direction opposite to the sun position, low sun elevation will cause 

shadows to appear. In that case, the cliff top line is easily located by the boundary between the classes: terrestrial 

vegetation; urbanization; mix of vegetation, and the class: shadow. 

Cliff foot: For cliff suffering erosion mainly from wave attacks, it can be reasonably assumed that during highest tide level 

the water domain will be in direct contact with cliff, without presence of beach or low-slopping rocky platforms in between. 

In case the geometrical conditions of the cliff regarding the sun exposition ensure that no any shadow is projected down 

the cliff, a relevant proxy for the cliff foot is the waterline at high tide. However, the tide level at high tide varies from one 

date to another due to varying tide cycle and the presence of wave set-up and storm surge. Unless the cliff is a vertical 

wall, these variations lead to meter-scale horizontal shifts of the waterline along the cliff face. The use of the latter proxy 

is then relevant only for steep cliffs and for addressing long-term changes, which both make the errors introduced by the 

latter reasoning negligible. 

A necessary condition for cliff line extraction is the use of images acquired with a low viewing angle. The closer to the nadir 

the image is acquired the more accurate will be the positioning of the cliff lines. Basically, even after image georeferencing, 

a sensor located over the water domain imaging the cliff face will tend to put the pixels of cliff top too much landward. 

The opposite phenomenon occurs for a sensor located over the land domain with a tendency to shift seaward the top of 

the cliff. For this latter mode of acquisition, the cliff foot may also not be seen by the sensor when the cliff face is steep 

enough. 

A narrow buffer area along the cliff (indicating where the cliff lines are expected to be found) has to delimited to drive the 

identification of the inter-class boundaries corresponding to the cliff lines. Finally, a visual inspection of automatically 

extracted cliff lines is necessary to allow manual correction/digitization in case the classifier fails in some regions of the 

study domain. 

• Tools 

The algorithm uses bash and python programming languages with support of sci-kit learn, Orfeo ToolBox and GDAL 

libraries. QGIS will be used for visual inspection and digitalization.  

• Output product 

The output of this algorithm is a vector of cliff foot and/or cliff top positions. 
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3.3.11.2 Validation 

The algorithm is experimental and will need testing during POC. Considering the numerous potential sources of errors and 

misinterpretations a maximal accuracy of the order of the pixel size is expected.  

3.3.11.3 Application range and Maturity 

As discussed previously in this section, this algorithm may not be applicable to all cliffs and designed of the algorithm is 

mostly site-specific. Also, the comparison of subsequent cliff lines will only be relevant if addressing temporal period large 

enough so that the observed changes are larger than the image resolution. While the classification method and diverse 

regularization methods are used routinely, the reference database for this kind of application need to be built by manually 

digitizing reference polygons over a subset of images. Additionally, the automated extraction of the boundaries between 

several type of class will require significant developments. The maturity of this algorithm can then be considered as low. 
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3.4 Algorithm group 4: Bathymetry 

 Introduction 

The knowledge about nearshore bathymetry is of paramount importance to oceanography research, management and 

economic activities. Nevertheless, bathymetric data acquisition in shallow waters (0 to 50 m) with traditional methods 

(e.g., single and multi-beam echo sounder) have disadvantages such as safety and cost. For these reasons, satellite remote 

sensing has become increasingly important in the bathymetry estimation. Some works have delved into swell properties 

in the nearshore area due to the interaction with the sea-bottom to infer the bathymetry (e.g., Brusch et al.,2011; Mishra 

et al., 2014; Pereira et al., 2019) (Figure 3-18). Other works focused on the use optical satellite sensors to retrieve 

bathymetry either by (1) calibrating an empirical model with in situ survey data (e.g. Lyzenga et al., 2006) or (2) calibrating 

a radiative transfer model which decomposes the radiometric intensity recorded at the water surface into contributions 

from the water column and the water bottom (Lee et al., 2002; Capo et al., 2014, Dekker et al., 2011). 
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Figure 3-18 - Bathymetry map with the location of the Leixões buoy and the Sentinel-1A sub-image (black rectangle) 
between Barra and Praia de Mira (W Portugal) (modified from Pereira et al., 2019). 

 State-of-the-art 

Several remote sensing techniques have been proposed to estimate the water depth in the last decades. In the case of 

optical sensors, there are two main approaches. In the first, available in situ data is used to calibrate parameters of an 

empirical model (Lyzenga et al., 2006; Stumpf et al., 2003) in which each water penetrating spectral band of the optical 

sensor is used in a linear combination. In the second type of approaches, a radiative transfer model is calibrated by 

estimating inherent and apparent optical properties of the water column by jointly exploiting water penetrating spectral 

bands of the sensor. Classical high resolution optical sensors (SPOT-5-6-7, Pleiades, Sentinel-2, Landsat-8, etc.) only offer 

a few water colour sensitive spectral bands and the radiative transfer model is simplified by considering some water optical 

properties as constant in the image (for instance bottom albedo and attenuation coefficients) and by empirically calibrating 

other parameters (for instance water absorption and backscattering). This has led to the development of a Quasi Analytical 

Algorithm (QAA) to resolve this calibration using water surface reflectance as inputs and water depth as an output (Lee et 

al., 2002; Capo et al., 2014). For hyperspectral sensors alternative approach to resolve radiative transfer model equations 

exists (e.g. Dekker et al., 2011), which are more adapted to very heterogeneous bottom conditions. Nevertheless, the 

utilization of such approach is limited by the water transparency and the variability in the optical properties of the water 

column and the reflecting bottom material (Adler-Golden et al., 2005). Therefore, its application in high energetic coasts 

with suspended sediments is restricted to water depths from 0 to 6 m. This limitation motivated the development of 

alternative methods which are focused on the change of wave properties due to the interaction with sea bottom 

topography (Brusch et al., 2011). When the waves propagate from deeper to shallower water their wavelength decreases 

and their direction changes, and as a result these properties allow to infer sea bottom features. Brusch et al. (2011) 

proposed for the first time, the application of the Fast Fourier Transform (FFT) over Synthetic-Aperture Radar (SAR) image 

to obtain a directional spectrum and then, to calculate the wavelength and wave direction and to estimate the water 

depth. These authors worked with SAR data obtained from the commercially available TerraSAR-X (TSX) data. After that, 

other authors have applied this methodology to SAR data obtained from the RISAT-1 commercial products (Mishra et al., 

2014) and Sentinel-1 missions (Wiehle and Pleskachecsky, 2018; Pereira et al., 2019). Pereira et al. (2019) compared the 

computed with the measured bathymetry to Aveiro coast (W Portugal) and they found the relative error of the water 

depth varies from 6% to 10%. Alternatively, to the Fast Fourier Transform (FFT), the Wavelet transform (Chui, 1992) is 
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more adequate to represent non-linear wave processes more common in shallow waters and can be used instead to the 

FFT in this nearshore domain (Abreu et al., submitted). 

 

 Algorithm 4a – Empirical model to retrieve bathymetry from HR/VHR optical data 

As described above, this approach is based on the combined use of available in situ data and water surface reflectance 

from HR/VHR optical data to calibrate an empirical model for water depth retrieval. The workflow of this approach is 

described in Figure 3-19 and relies on the so-called Lyzenga algorithm. 

 

Figure 3-19 - Workflow of the bathymetry retrieval algorithms from HR/VHR optical data. 

3.4.3.1 Algorithm description 

• Input data 

Three main input data are needed to perform this approach:  

o Water surface reflectance image obtained after performing three preprocessing steps consisting in (1) 

atmospheric correction, (2) mask of non-water pixels, (3) sun glint correction, 

o Deep water mask used to calibrate deep water parameters of the empirical model, 

o In situ data covering all the depth range and bottom types observed in the area of interest. 

• Algorithms 

Using all the N spectral bands of the water surface reflectance image and in situ data as input, the empirical model is 

calibrated using the following linear combination equation: 

- ℎ =  ℎ0 + ∑ hjln(𝑁
𝑗=1 𝑅𝑗 − 𝑅𝑗𝑠) 

- where h is the in situ depth, Rj and Rjs are the water surface reflectance and the mean deep water reflectance for 

the spectral band j and h0 and hj are calibration parameters derived from a multilinear regression. 
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- The bathymetry is retrieved by applying this calibrated equation to the entire water surface reflectance image. 

Because regression is performed directly on water depth expressed in accordance to a local hydrographic 

reference level, no tide correction is required. 

• Tools 

Two main software and toolboxes are needed essentially for the pre-processing steps: 

o ACOLITE software for atmospheric correction of Sentinel-2, Landsat-8 and recently Pleiades data 

o OTB toolbox for atmospheric correction of other optical sensor and to perform the supervised 

classification and mask generation  

• Output product 

The output product is directly a raster file containing bathymetry estimation for each valid water pixels. It can be converted 

to a xyz file or to iso-contours if requested.  

3.4.3.2 Validation  

The overall accuracy can reach 0.3 m in shallow waters (Lafon et al. 2014) but it generally increases with depth (Mishra et 

al., 2004; Hedley et al., 2016) and the mean relative error is usually around 10-20 % of the depth. In the full range of 

application (0-10m), the overall accuracy is closer to 1 m. 

3.4.3.3 Application range and Maturity 

This empirical approach has been widely used in past and recent publications (e.g. Mishra et al. 2004; Zoffoli et al. 2014). 

It is known to retrieve reliable depth range up to 20 m but is more often limited to 10 m (Hedley et al., 2016). This approach 

suffers also from a few drawbacks. First, it assumes constant water conditions across the area which is of course never a 

realistic hypothesis even though clear waters can come close to such conditions. Second, it is sensitive to bottom 

heterogeneity. The more bottom types coexist in the area, the less accurate the results will be. This can be partially 

improved by calibrating the model for each bottom type assuming that a bottom type map is available. Third, application 

of this method is restricted to areas where clouds and corresponding shadows do not impact the water surface reflectance. 

Presence of waves can also be a limiting factor since they can change the water surface reflectance in several ways: (i) the 

wave-scale water level deformation, (ii) the glint-related wave crest pattern, (iii) wave breaking that cause both sediment 

resuspension and white foam persistence. While perturbations induced by low-energy waves are usually negligible, this is 

not the case for intermediate to high-energy waves. Last but not least, it requires in situ data. 

Nevertheless, this approach is well known and can be easily deployed on many types of optical data. Its maturity can be 

considered as high. 

 

 Algorithm 4b – Quasi-analytical model to retrieve bathymetry from HR/VHR optical data 

Contrary to the previous algorithm described in 3.4.3, this approach does not require in situ data and is fully based on the 

description of the physical disturbances endured by the light while it penetrates the water column and is reflected by the 

bottom. A quasi analytical calibration of the radiative transfer model describing these phenomena is used to retrieve the 

bathymetry. The workflow of this approach is also described in Figure 3-19 and relies on the so-called QAA semi-analytical 

algorithm. 

3.4.4.1 Algorithm description 

• Input data 

Five main input data are needed to perform this approach: 

- Water surface reflectance image (mainly the green band) obtained after performing three pre-processing steps 

consisting in (1) atmospheric correction, (2) mask of non-water pixels, (3) sun glint correction, 

- Deep water mask used to calibrate deep water parameters of the model, 
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- Pre-calibrated parameters of the QAA algorithm empirically estimated using IOP / AOP databases1  and spectral 

sensitivity of the targeted optical sensor, 

- Bottom types map and bottom albedo if the targeted sites display heterogeneities, 

- Tide level at time of image acquisition to transform water depth into water level in accordance to the 

hydrographic reference level. 

• Algorithms 

The application of the QAA algorithm follows a four-steps strategy as described in Capo et al. (2014): 

- The deep water mask defined during the pre-processing steps is used to estimate the mean deep water 

subsurface remote sensing reflectance (rrsdeep) for the targeted spectral band. The bottom albedo (RrsB) is 

considered as known but if the bottom type is homogeneous (sandy shore for instance), automatic strategies 

exist to directly infer the albedo from the image. 

- From rrsdeep, the total absorption and backscattering are estimated followed by the attenuation coefficient Kd in 

accordance with the equations of the QAA (Lee et al., 2002). 

- Then, the water depth h is estimated using the following equation: 

 

ℎ =
1

2𝐾𝑑

[𝑙𝑛 (
1

𝜋
𝑅𝑟𝑠

𝐵 − 𝑟𝑟𝑠
𝑑𝑒𝑒𝑝

) − 𝑙𝑛(𝑟𝑟𝑠 − 𝑟𝑟𝑠
𝑑𝑒𝑒𝑝

)] 

 

- Finally, water depths are converted into bathymetric values using the tide level at the time of image acquisition. 

• Tools 

As previously, two main software and toolboxes are needed essentially for the pre-processing steps: 

- ACOLITE software for atmospheric correction of Sentinel-2, Landsat-8 and recently Pleiades data 

- OTB toolbox for atmospheric correction of other optical sensor and to perform the supervised classification and 

mask generation  

• Output product 

The output product is directly a raster file containing bathymetry estimation for each valid water pixels. It can be converted 

to a xyz file or to iso-contours if requested.  

 

3.4.4.2 Validation  

The accuracy is generally poorer than with the empirical approach and RMSE reaches 1.3 m in the study of Capo et al. 

(2014).  Figure 3-20 shows a satellite derived bathymetry produced by i-Sea with image acquired in 2015 on the French 

Mediterranean coastline using a Pleiades data along with comparison with observations from a LIDAR survey. Results 

revealed a RMSE of 0,6 m on the entire area and an overall accurate detection of the nearshore sandbar location. 

 

 

1 http://www.ioccg.org/groups/OCAG_data.html 
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Figure 3-20 - Example of optical satellite derived bathymetry at the Lido de Sète (S France) with a Pléiades image acquired 
in 2015 and validation results. 

3.4.4.3 Application range and Maturity 

This QAA approach can retrieve reliable depth up to 10 to 15 m in clear waters with bright sandy substrate. For example, 

in Capo et al. (2014) study on the French Atlantic sandy coastline, depths of up to 7 m have been retrieved successfully. 

Similar to the above-mentioned empirical approach, a few drawbacks have to be noted. It also assumes constant water 

conditions across the area and it is sensitive to bottom heterogeneity. The presence of clouds, shadows and waves can 

also restrict the method application. Also, because water depths need to be corrected from the tide level, data from tide 

modes or tide gauges.   

Nevertheless, this approach is cost effective and does not require in situ data, which are often missing or outdated in many 

places worldwide. Its maturity can be considered as high. 

 

 Algorithm 4c – Bathymetry swell inversion 

3.4.5.1 Algorithm description 

• Input data 

HR or VHR Optical or SAR georeferenced images in which swell condition are present (the wave period of the images must 

be higher than 15 seconds. Eventually if a set of images with a visible swell and good temporal resolution is available, they 

can be used to produce a merge result. In this case the elapsed time between successive acquisitions must also be 

considered. In this case the elapsed time between successive acquisitions must also be considered. 

Although the offshore wavelength can be computed from the image it is recommended to have access to wave data from 

a directional wave buoy, for the day of image acquisition, due two main reasons: (1) the image wavelength represent the 

instant of image acquisition while a time series of a wave buoy represents the mean wave conditions; (2) the image only 

allow estimate the wavelength while the wave buoy represents the observed offshore wavelength. 

The astronomical tidal level for the dates of the image acquisition is also required. 

• Algorithms 

The application of the algorithm follows a four-steps strategy as described in Pereira et al. (2019) and Abreu et al. 

(submitted): 

The first step is the definition of a grid of centre points over the image. These points define the locations in the image 

where the local (i.e., in the vicinity of each point) estimation of the wave direction and wavelength is carried out. Next, a 
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squared region (image cell) centred in each point of the grid is defined, whose width is specified independently of the grid 

spacing (in this way, partial superposition between adjacent cells is allowed). 

The second step is the spectral analysis, i.e., calculation of the two-dimensional FFT for each defined squared cell, resulting 

in a two-dimensional frequency-domain representation of the information content of each cell in the image. The FFT 

represents the energy that a signal shows distributed with respect to the frequency of each of its components, when 

considering a decomposition of such signal in sinusoidal components. If a signal displays a sinusoidal-like dominant 

component, this Fourier representation will reveal a high peak of energy at the frequency of such component. Thus, it will 

be a suitable tool for estimating the characteristics of the dominant sea waves (i.e. wavelength and wave direction) in a 

specific region. Instead to the FFT the wavelet transform (WT) can be used when the signal displays a non-sinusoidal-like 

dominant component (more adequate to shallow waters). 

The wavelength (λ) (in number of pixels) of the dominant surface wave of that cell can be estimated through (Eq.1): 

λ = 1/ (dx/2M)2 + (dy/2N)2 (1) 

where M is the number of columns of pixels, N is the number of rows of pixels, dx is the number of columns between two 

identified peaks in the frequency-domain representation of the cell image and dy the respective difference in number of 

rows.  

The value of the wavelength in meters is then obtained from the former by considering the image spatial resolution. The 

wave direction is the orientation of the segment connecting the two identified sharp peaks. 

The wavelengths and wave directions are associated to the coordinates of the centre point of the corresponding cell, in 

the georeferenced coordinate system provided by the coordinated control points which are attached to the satellite image. 

The third step is the bathymetric estimation from linear wave theory. This is an analytical solution of the momentum and 

mass conservation equations that describe the velocity field and pressure along the water column and establishes a 

relation between the wave celerity, the frequency and the water depth (linear dispersion relation). 

The approach considered for determining the sea-bottom depth (h) satisfies the set of values of the wavelength (λ) and 

the wavelength at deep water (λ0) given in the linear dispersion relation: 

λ = λ0 tanh(kh)    (2) 

where λ0=gT2/2π, T is the wave period, g is the gravity acceleration, k is the wave number and h is the sea-bottom depth. 

The effect of a mean current was neglected in Eq. (2). 

The bathymetry is computed from: 

h =2 atanh(λ / λ0)   (3) 

The last step is the application of low-pass filter to remove the noise in the computed values. This filter has two input 

parameters: the filter width is the scalar indicative of the width of the filter and the filter sharpness is the scalar indicating 

how sharp the transition between the pass- and reject-bands is. 

• Tools 

A set of Matlab routines were implemented to address the four-steps strategy as described in Pereira et al., 2019 and 

Abreu et al., submitted. 

• Output product 

The output product is directly a file containing bathymetry estimation for the domain covered by the linear dispersion 

relation. The output can be presented in a xyz file or to iso-contours if requested. 

3.4.5.2 Validation  

The bathymetry computed by means of FFT from satellite SAR images (Sentinel-1) for Aveiro coast were compared with 

the bathymetry provided by the Oceanographic Observatory of the Iberian Margin (RAIA Observatory). The results 

disclosed that 20 m estimated isobaths provided the best performance whereas the 30 m estimated isobaths provided the 

lowest performance. The relative error of the water depth varies between 6% and 10% (Pereira et al., 2019). 

The WT was not yet validated. 
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Figure 3-21 presents the comparison between the ensemble calculated bathymetry with Pereira et al. 2019 method with 

in situ measures. The computed values averages for each cell the results obtained with the four SAR images. Figure 3-22 

shows the computed vs. measured dispersion for water depths between 10 and 35 m showing large errors for the higher 

water depths.  

 

Figure 3-21 - a) Measured bathymetry and b) Ensemble calculated bathymetry near the coast at Aveiro, Portugal. 
Adapted from Pereira et al. 2019. 

 

 

Figure 3-22 - Water depth estimated by FFT methodology vs in situ bathymetry measurements considering all the points of 
the interpolated grid. Adapted from Pereira et al. 2019. 
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3.4.5.3 Application range and Maturity 

The algorithm with FFT that is adequate for water depths between -30 m and -15 m has been tested at Aveiro coast in the 

images of year 2015 (Pereira et al., 2019). It can be considered as a demonstration algorithm only tested in one test site 

with a set of four images. The results obtained show that a combined solution that merges the results of all the image set 

slight improves the results. The relative error of the water depth ranges between 6% and 10% for water depths between 

15 and 30 m. 

The algorithm with WT that is for water depths between -15 m and -1 m is an experimental only tested over one image in 

the Aveiro coast. The obtained results allow only infer that it is adequate to estimate the sea-bottom morphology but the 

accuracy assessment was not performed. It can be considered as an innovative or experimental algorithm.  

 Both of the algorithms are not suitable for detection of coastal erosion. 
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3.5 Algorithm group 5: Classification methods 

 Introduction 

Classification methods are used to retrieve information about land cover and land use. In order to address Coastal Erosion 

end-users’ requirements, increasing knowledge about land cover and land cover change with time is useful to assess 

coastal vulnerability and erosion rates. The categorization of the coastal zone according to sediment type and overlaying 

vegetation, roads and buildings can be done by different classification schemes. The output of the classifications in terms 

of number of classes and the class types depend on the questions on the one hand and on the spectral and spatial 

characteristics of the input images on the other hand. Only spectrally distinguishable surface types can be separated in 

different classes and surface types need to be large enough to be resolvable by the respective pixel size. Land cover classes 

cover natural and human made surface types. In coastal regions the surface types are very manifold and comprise among 

others urban areas, rocks, beaches, dunes or wetlands.  With respect to coastline indicators, the classifications can be used 

to identify the edge between two neighboring types of surfaces and can be extracted from the predicted maps. 

Classifications are based on various descriptors such as pixel multispectral reflectance and spectral band indices or ratios, 

but also on textural descriptors. They are chosen, adapted and trained in order to adapt to coastal area diversity and 

complexity and to the expected number of classes that must be retrieved. One of the Mediterranean POC site shown in 

Figure 3-23 displays industrialized, urban areas natural areas located along a very narrow sea front suffering from erosion 

and protected by groins and breakwaters. If needed, some of the classification techniques described hereafter would be 

relevant to differentiate all land uses and land covers and obtain a continuous and exhaustive shoreline vector for instance. 

Different classification methods are introduced: supervised classification scheme and decision trees. Applications to optical 

and SAR imagery are proposed. 

 

Figure 3-23 - Industrialised and urbanised area experiencing important erosion rates (French Mediterranean coast). 

 State-of-the-art 

Natural ecosystems, beaches, dune systems, intertidal flats together with urban and industrial areas are susceptible to be 

mapped using high resolution remote sensing imagery. With this respect, multiple approaches are found in the literature 

(see review by Baghdadi and Zribi, 2016). 

For instance, works based on optical and/or SAR satellite remote sensing for the mapping of coastal ecosystems are 

numerous over temperate and tropical coastal areas, in relation with tidal flats and sediment type mapping (Van der Wal 
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et al. 2007, Gade et al 2008, Brockmann et al 2008), the detection and mapping of intertidal macrofauna e.g. oyster and 

mussel seabeds (Gade et al., 2014), of intertidal and/or subtidal seagrass habitats (Dekker et al., 2005; Phinn et al., 2008; 

Barillé et al., 2010, Müller et al. 2016), of coral reefs (Andrefouët et al 2001, Palandro et al, 2008).  

Coastal terrestrial landscapes, e.g. coastal dunes, salt marsh habitats and mangroves, have also been addressed over years 

both by satellite optical-based images or in some cases coupled with SAR images (for salt marshes, refer to Slatton et al. 

2008, Dehouck et al., 2012; Van Beijma et al 2014; for mangroves consider Baghdadi & Zribi, 2016; Proisy et al., 2019; for 

coastal dunes  refer to Lafon et al., 2010, 2014 ; for coastal dunes and shingle bars see Roche et al., 2014). 

Several remote sensing strategies are possible to perform coastal habitat mapping: mono-date or multi-temporal 

classification using satellite time series, single source or multi-source optical/ radar data combined in either supervised or 

non-supervised classification algorithms. Among the most recent and currently used algorithms, we must mention the 

Support Vector Machines (SVM, Boser et al., 1992), the Multi Layer Perceptron (MLP) and the Random Forest (Pal, 2005; 

Beguet et al., 2014). 

For marine ecosystems mapping (coral reefs, seagrass, sediment), physics-based algorithms based on radiative transfer 

models like those detailed in Algorithm 4 section are frequently used in shallow and clear waters (e.g. Hedley et al. 2012; 

Gapper et al., 2018).  

Dune foot (limit between dune and beach) can be extracted from a mono-date supervised image classification scheme 

(Roche et al., 2014), this shows also the good potential of image classification for subaerial feature extraction (section 4.3). 

 

 Algorithm 5a – Supervised classification approaches based on optical data 

3.5.3.1 Algorithm description 

• Input data 

Single or multiple (in case image timeseries is used) high resolution (HR) or very high resolution (VHR) optical images must 

be provided to the algorithm. Field observations are usually mandatory to define the typologies present in the image(s) 

and to create the polygons associated with these typologies. A very good knowledge of the study areas can be sometimes 

enough. 

• Algorithms 

For many thematic applications, a land use map with a pertinent typology is needed. We developed a full mapping process 

based on the exploitation of HR and VHR satellite images (such as Pléiades, Sentinel-2, etc.) and latest machine learning 

approaches such as Deep Learning in order to produce different levels of land use mapping. Our process, described in 

Figure 3-24, is neither sensor/source dependent neither thematic dependant, it could be applied for many mapping tasks, 

integrating temporal analysis or multi-source abilities. 

The core of our mapping process is the articulation of two main pillars 

• First, an iterative discussion with end-users and thematic specialists allows us to define and fine tune the targeted 

typology according to the potential of available data and image constraints. Field campaign measurement is also 

discussed, designed and adapted to site specifications or thematic considerations with respect to image sampling 

constraints. This leads to the elaboration of a pertinent and accurate database. 

• Second, we adapt our image analysis and machine learning strategies to the problem, from a pixel wise 

classification of time series image features with RandomForest when mapping of various vegetation classes is 

required to convolutional neural network architectures for very high precision mapping of specific objects. 

Depending of the problematic, we focus more on temporal analysis (vegetation phenology) or on spatial analysis 

(such as shapes and textures), which allows investigating and optimizing the exploitation of the image potential. 
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Figure 3-24 - Overview of ISEA’s supervised mapping approach 

The automatic processing chain is presented Figure 3-24, starting from image and field data acquisition, a workaround 

typology is needed, based on a cognitive process between thematic experts and image analysis and machine learning 

experts. This part is very important as it designs the problem and its limits according to the objectives to reach. Images are 

pre-processed and field data polygons are carefully checked. Images (or image time series) are then used to compute new 

information such as radiometric or textural indexes (depending on the nature of the problem and the image spectral and 

spatial resolution) and a reference database is built. The next step consists in testing and optimizing the machine learning 

process, looking for the best configuration of images features, sampling strategies and classifiers. RandomForest classifier 

is usually used as a reference, but we also work continuously on DeepLearning architectures and compare performances. 

We select the best configuration and then apply our modelling to the whole image. A confidence index of the classifier is 

produced, and a spatial regularization is applied to the classification output (in order to reduce some noise and isolated 

pixels).  

The map produced could be used to extract the borders of classes of interest (e.g. waterline, dune foot, interface between 

sandy and rocky bottom) or to estimate the distribution area of classes of interest.  

• Tools 

The algorithm uses bash and python programming languages with support of sci-kit learn, Orfeo ToolBox and GDAL 

libraries. 

3.5.3.2 Validation  

Our mapping process has been developed and improved during the Biocoast project which aimed to map vegetation types 

with very precise typologies. Vegetation maps of five different sites in France have been produced with very satisfying 

results, both in term of spatial precision and typology recognition (an average of 87% of overall accuracy is obtained on 

the five sites, with an average number of twenty vegetation classes). Figure 3-25 shows a Biocoast map. Since all sites are 

varying in term of size, needs and problematic, vegetation complexity, the robustness and the reproducibility of our 

approach has been well proven, with Pléiades and Sentinel-2 like images. On another side, very high precision mapping 

based on convolutional neural network was applied to seagrass mapping and oyster land mapping with impressive results 

(compares to manual digitization). To resume, we have a wide range of tools based on the latest advances in remote 

sensing and machine learning combined with a great experience in terms of use and adaptation of these methods to a 

specific problem. 
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Figure 3-25 - Vegetation map of Ile Nouvelle and Vasard de Beychevelle site produced by BIOCOAST mapping process on a 
Pléiades time series (2-m spatial resolution). 
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3.5.3.3 Application range and Maturity 

Our mapping process is very mature and has been applied in many circumstances for different applications of land use 

thematic. Obviously, as any other optical based remote sensing, clouds are a strong limit. But in a context of temporal 

series, temporal gap filling techniques can be applied to avoid this issue. Working with VHR and HR is almost the same, the 

main difference could be the use of textural information when the spatial resolution is significantly smaller than the size 

of the objects of interest. Also, the precision level of the targeted typology with VHR data cannot be the same as the one 

used for HR. With less spatial precision, the typology needs to be simplified. Classes such as dry and wet sand, mud, sea-

grass and rocks are able to be mapped from HR and VHR optical remote sensing. 

For the classification of underwater habitats, we have less maturity about the precision and performance we could reach. 

The quality of the images (and atmospheric conditions), the state of the water surface (glint presence) and its depth, the 

presence of turbidity are the most influent factors on underwater visibility. We succeed to produce some very accurate 

map on well controlled cases, like sea-grass mapping from Sentinel-2 data. But we miss the experiences of a range of 

possible cases of application. We assume that in most cases, we should be able to distinguish sand, rocks and vegetated 

habitats underwater. The accuracy is still undetermined, we will need reference data on different sites to estimate it 

rigorously case by case. 

 

 Algorithm 5b – Classification based on texture information derived from SAR amplitude data 

The lack of spectral information in SAR imagery makes necessary the use of texture information. Classical texture statistics 

are used as pixel features to discriminate changes on materials on scene. 

3.5.4.1 Algorithm description 

As texture metrics, occurrence metrics (range, mean, variance, entropy and skewness) (Anys et al., 1994) and co-

occurrence metrics (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation)  

(Haralick et al., 1973) are proposed. 

Once texture metrics are obtained, different standard classification methods are proposed (maximum likelihood (Richards, 

1999), neural network (Richards, 1999; Rumelhart and McClelland, 1987) and support vector machine (Chang and Lin, 2011; 

Hsu et al., 2010; Wu et al., 2004) to classify texture information. 

• Input data 

o SAR amplitude image 

• Algorithms 

o Maximum likelihood  

o Support vector machine  

o Neural network  

• Tools 

o ENVI 

• Output product 

o Classification raster in TIFF format 

3.5.4.2 Validation 

The texture metrics and classification algorithms have been used by the scientific community for years inside ENVI 

software. Some cases of use in the context of SAR data from a coastal area can be found in (Fonteh et al., 2016) (Zakeri et 

al., 2017) (Abdikan et al., 2016). 

3.5.4.3 Application range and Maturity  

 These texture metrics and classification algorithms have been implemented in COTS ENVI for several years and are 

considered mature. They can be applied to any kind of land use problem, not only to coastal areas as it can be seen in 

(Heumann, 2011) where these classification algorithms are used for mangrove classification, and (Luo, et al., 2019) where 

it is used to classify mine landslide. 
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Classification result will depend on training data. A good selection of training data will allow to create a good model for 

the classes. This means to avoid selecting, as training data, pixels where a mixture of different classes may be contained. 

 

 Algorithm 5c – Decision tree classification based on band ratios and LSU (BC) 

3.5.5.1 Algorithm description 

The classification of optical data for intertidal habitats and sediment distribution is based on a number of different decision 

trees. Dedicated decision trees are in place that focus on specific aspects of the intertidal flat areas, such as seagrass 

meadows and mussle beds, sediment distribution or the distribution of sediment and water areas, including remaining 

water ponds on the sediment surfaces. These decision trees, which use well defined features derived from optical data, 

will be used to characterize the intertidal habitats and their changes, in particular the morphological changes of intertidal 

creeks.   

• Input data 

Each classification is based on a single acquisition of optical high resolution data from sensors onboard of Landsat-5, 

Landsat-8, Sentinel-2, SPOT-5,-6,-7, RapidEye. In order to detect the morphological characteristics and changes a long time 

series of classifications is required. The longest time series is available for Landsat series, starting with Landsat-5 MS, 

Landsat-8 ETM (1999-2003), Landsat-8 since 2013. Data availability is limited due to low tide constraints, but it has 

improved since the launch of Sentinel-2; having both – Landsat-8 OLI and Sentinel-2 MSI in parallel since 2015 and even 

with MSI-B since 2017. Until now, the intertidal flat classifications have been mainly applied to freely available data.  

• Algorithms 

A classification framework has been developed together with national park authorities to classify the intertidal flat areas 

of the Wadden Sea. The classification is based on a knowledge-based decision trees using different band combinations and 

linear spectral unmixing abundances (Müller et al., 2016). Examples of different decision trees are given in Figure 3-26. For 

this specific product, the discrimination between sediment areas and tidal creeks (water) is needed. It also provides shallow 

water areas on the tidal flats (remaining water in depressions). Especially the shift of the tidal creeks and sediment flats is 

needed for assessing erosion processes in the Wadden Sea. Finally, the classification results are overlaid in order to 

visualise the shift of tidal creeks (Figure 3-28). 

 

Figure 3-26 -Examples of different decision trees for retrieving intertidal flat habitats and sediment distributions 

• Tools 

SNAP and ENVI 

• Output product 

The output are classification results in raster format. They are overlaid for analysing the tidal creek changes. The products 

are used the assessment of erosion in the German Wadden Sea Test Sites (North Sea). 
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Figure 3-27 - Classification of sediment flats and tidal creeks in 2015 (left) and 2016 (right 

 

Figure 3-28: changes of tidal creek positions between 2015 and 2016 

3.5.5.2 Validation  

The classification of intertidal flat habitats, which is the basis of this application, has been validated in terms of sediment 

type and seagrass beds (Müller et al. 2016). However, the transition between water and land has only be validated against 

the original images, as the water level changes too fast due to tidal effects and cannot be evaluated in the field.  

3.5.5.3 Application range and Maturity 

The method is strongly depending on the tidal phase and weather conditions during the images acquisition. Therefore, 

several images need to be analysed per period in order to get a representative distribution of the tidal creeks. Cloud free 

conditions and low tide are pre-conditions for good images and reduce the availability of suitable images. The situation 

has been improved since the launch of Sentinel-2. 

The outcome, which needs to be applied to a longer time series will be used to observe the direction morphology changes 

and if creeks are approaching coastal areas or if large tidal basins undergo main changes (e.g. connection of tidal basins by 

tidal creek changes or break throughs. The identification of the trend is in focus for assessing the influence on coastal 

erosion.  The more images are included, the better the expected results. As the water level is very variable, it needs to be 

demonstrated that the trend is still detectable. The accuracy of the trend detection will be very much influenced by the 

availability of suitable low tide images.   
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3.6 Algorithm group 6: Extraction of submerged morphological structures and changes 

 Introduction  

Coastal areas, especially beaches, are more and more threatened by the complex effects of climate change, which induces 

stresses such as increased storminess and overall more frequent extreme events. These can lead to pressures that can 

take the form of increased erosion or modification of the maximum run-up limit. Since nearshore sandbars represent a 

natural defence system against these phenomena, monitoring the dynamics and behaviour of such morphological features 

can help coastal managers better prepare for coastal protection actions. 

 State-of-the-art 

https://doi.org/10.1371/journal.pone.0215134
http://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf
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Various methods were widely used for the quantification of sandbar crest positions, ranging from seasonal and annual 

echo-sounder data to LiDAR surveys, X-band radar images, photographic and satellite imagery and video techniques 

(Roman-Rivera and Ellis, 2019).  

However, applications of satellite imagery to date have been mainly restricted to nearshore satellite-derived bathymetry, 

which can be further used to derive the locations of sandbars. Nevertheless, there are situations when a good quality 

bathymetry is not possible to be obtained (such as areas with moderate to high turbidity), but it is still possible to extract 

the positions of the sandbars. Therefore, dedicated approaches are required. A recent study of Athanasiou et al. (2018) 

discussed the suitability of using the Landsat 5, 7, 8 and Sentinel-2 satellite images for sandbar locations manual (visual) 

extraction in order to investigate decadal scale crescentic sandbar dynamics at Anmok beach in South Korea. To our 

knowledge, in exception to this work, there is no other study to date dealing with sandbar crest positions extraction (either 

manual or automatic) and analysis using high to moderate satellite images. 

 

 Algorithm 6a – Submerged sand banks 

3.6.3.1 Algorithm description 

The algorithm is used to extract each submerged sandbar position using perpendicular profiles along the shoreline, based 

on multispectral satellite imagery (Tatui and Constantin, in review). There are two distinct mechanisms (determined by 

the wave regime) that can be used to detect the position of a sandbar using a satellite image. The first one relies on a 

relative bathymetric estimation (not absolute values of water depth). This approach yields good results in case of low wave 

energy. In other situations, wave breaking occurs in the proximity of the shore, when the wave breaks on sandbars crest. 

It therefore creates a foam layer on the surface of the water, with very high reflectance response compared to the 

surrounding water. The maximum reflectance intensity of this foam region corresponds to the sandbar crest position 

(similar to video techniques). For these two scenarios, even if the observed object/phenomenon is different, it refers to 

the same morphometric features and the methodology relies on the same principle: reflectance spectrum is amplified over 

the areas where the sandbars are located. 

• Input data 

The input data is represented by high to medium resolution multispectral satellite imagery. Visible and infrared (NIR or 

SWIR) wavelengths are required. The algorithm was tested on Sentine-2 data. Higher resolution images are expected to 

yield same quality results and even better.  

• Algorithms 

Several imagery pre-processing steps are required before the sandbar extraction can be performed, such as: scene 

cropping, resampling, masking areas that are not covered by water or combining the spectral bands from the visible 

domain, as to augment the increases in spectral response over the sandbar.  

The procedure for sandbars extraction follows several steps, which are detailed hereafter:  

1. A network of profiles, perpendicular to the shoreline is created.  

2. Along each profile, the satellite combined reflectance values are extracted.   

3. An exponential model is fitted to the graph of each profile perpendicular to the shoreline.  

4. A normalisation of the profile is performed, by subtracting the model from the original data vector.   

5. Using a moving window with a dimension, the maximum value within that region is computed. If the centre of 

the moving window corresponds with the identified maximum value, the position is qualified as a possible crest 

sandbar position. Also, if all the values within that moving window have a low standard deviation, then the point 

is not taken into consideration. Next, a supplementary filtration is performed, by removing points below the 

mean value of the positive numbers of the profile.  

6. The final step is to compute a distance matrix between all points. Only those that have a neighbour closer than a 

specific distance are kept. Since the features that we hunt for are linear ones, occasional presence of just one 

point in space is considered not enough as to represent a sandbar.  
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• Tools  

In order to implement the methodology, the following software and libraries were used: Geospatial Data Abstraction 

Library (GDAL) for satellite data pre-processing; R for the sandbar extraction.  

• Output Products  

Figure below presents the sandbar position extracted from a Sentinel-2 image over different moments in time.   

 

Figure 3-29 - Sandbar position extracted from a Sentinel-2 image over different moments in time  

3.6.3.2 Validation  

Validation activities consists of comparing the distance from shore (m) extracted from Sentinel-2 compared with distance 

from shore (m) determined from bathymetric measurements. The result of validation work performed for multiple match-

up pairs are shown in the following figure. Using the Sentinel-2 images the mean error (bias) in the cross-shore distance 

from the shoreline is of 6.2 m with a median error decreasing to 5.4 m and a mean relative error of approximately 6%. 

However, the use of higher-resolution images such as those acquired by Pléaides 1 may results in lower detection errors 

(higher accuracy). 
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Figure 3-30 – Match-up Analysis for distance of shore between DEM and derived sand banks 

3.6.3.3 Application range and Maturity  

The algorithm is developed using the new and innovative approach based on the combined reflectance of the submerged 

sand bars in the visible spectrum. The method has been applied on cloud free Sentinel-2 images from all seasons, covering 

various wave conditions, offered solid results. The area of interest is represented by the coastal area of Danube Delta, 

between Sfantu Gheorghe and Sulina.  

The algorithm was tested on more than 3 years of satellite data and was validated using consistent in situ measurements. 

The maturity of implementation allows replication in other areas and using other satellite data types.  

 

 Algorithm 6b – Mapping change of sandbars 

3.6.4.1 Algorithm description 

• Input data 

Sentinel-2 10m visible bands 

• Algorithms 

This simple algorithm is based on the interpretation of RGB images and on the extraction of transects across the sand bank 

ripples. The transects are extracted either from one band or from indices of bands that highlight the difference in colour 

of sand bank ripples and sand bank valleys. Best suited band combination seems to be the peak height of B3 (green band).  

The first step is to produce RGB images of cloudfree Sentinel-2 images for all available years and generate an animated 

GIF from them. This small movie shows if sand banks are stable in their position or if they change over time. 

The second step is to define a suitable transect position that is perpendicular to the ripples and to extract the values of 

Band 2, 3 and 4 of cloudfree Sentinel-2 images. The peak height of B3 is calculated from the three visible 10m bands. The 

values are visualized in transect plots. The position of relative max and min show if the positions of ripples are changing 

across the different acquisitions.  
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𝑃𝑒𝑎𝑘 ℎ𝑒𝑖𝑔ℎ𝑡 𝐵3 = (𝐵3 − 𝐵2 − (𝐵4 − 𝐵2) ∗ (0.561 −  0.482 0.654 − 0.482⁄ )) ∗ 100 

The absolute height of the maxima / minima is not of main interest, but their positions. 

• Tools 

SNAP (or any other EO image software) and excel/python for plotting 

• Output data 

Time series of RGB images and resulting animated GIFs and Transect plots. 

 

  

Figure 3-31 – RGB of underwater sand banks south of Sylt Odde from 2 different Sentinel-2 acquisitions 

 

 

Figure 3-32: Transect plot of the peak height index for two different Sentinel-2 acquisitions 

3.6.4.2 Validation 

This method has not yet been validated. It will be compared with Laser bathymetry products provided by the user.  
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3.6.4.3 Application range and Maturity 

This algorithm has not yet been applied but are requested by the users and will be tested during the POC. This algorithm 

is currently for local application. It can be applied to a long time series by automated extraction of the transects but in 

order to be sure that the images are suitable, a visual inspection is needed.  
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4 ALIGNMENT WITH END-USER REQUIREMENTS AND ALGORITHM 
SELECTION 

4.1 Introduction 
Here we assess how the algorithms proposed in Chapter 3 fit with the requirements expressed by the end-user enrolled in 

the Space for Shore community. This chapter is made several sections; one section per indicator recalled in Table 2-1 in 

Chapter 2. For every indicator, the end-user requirements – summarized in the Requirements Baseline document – are 

here exhaustively listed (in one Table per indicator) and the corresponding algorithms proposed by the consortium 

partners in Chapter 3 are remined.  

Finally, a short discussion about the capacity of the different algorithms to fulfil the requirements (mainly accuracy and 

production frequency) is engaged. This leads to the identification of the best combination of algorithms with EO data for 

every indicator and every POC site, except when it is impossible to fit the requirements. 

Independent of individual algorithms or products, EO data come with certain constrains which are summarized in chapter 

4.2. They apply to all EO-based products. 

The tables given in Section 4.3 to Section 4.13 (one table per indicator) provide the compilation of requirements we have 

to address and proposed algorithm/data. When no requirement was provided by end-users for a parameter this is 

indicated by the symbol ng (= not given) and a suggestion for this parameter is made in parentheses following the symbol; 

suggestion is based on requirements from neighbouring sites or sites from other coastal region with similar environmental 

settings. The table also includes algorithm and EO data resolution that fulfil the end-user requirements. See Table 4-1 for 

the spatial resolution of optical sensors and Table 4-2 for SAR sensors corresponding to annotated EO data resolution. 

Even if not requested by end-users, production of some coastal erosion indicator for long-term monitoring at some specific 

POC sites is envisaged. This will be done for sites where coastal erosion dynamics are large enough with respect to (i) the 

spatial resolution of the EO data from ESA and other open archives used in the algorithms and (ii) a targeted 25-yr period 

toward the past. The resolution of these EO data generally ranges from 10 to 30 m that makes almost impossible to detect 

any coastal change signal at sites where spatial change rate are approximately below 0.4 to 1.2 m/yr, respectively. 

4.2 Common considerations 

 Geo-referencing accuracy and implication 

Raw optical and SAR EO data acquired by satellite-borne sensors are usually automatically georeferenced by satellite image 

providers using complex processing chain. These processing chain ensure that at global scale the georeferencing is of very 



Space for Shore – Technical Specification v.1.1 

 

Page | 65 

 

high quality. However, at local scale some discrepancies can be observed with georeferencing errors of the order of the 

pixel resolution (Gascon et al., 20172; Yan et al., 20163). The accuracy georeferencing of every image may be largely 

influenced by the number of ground control points (GCP) used in the procedure. It is expected that in coastal areas the 

georeferencing errors are maximized due to a lower number of GCP. It will be crucial to control these errors for every 

couple (sensor; POC site) as they will cumulate with detection errors inherent to the algorithms proposed by the 

consortium partners. Although some of those algorithms theoretically meet the end-user requirements, large 

georeferencing errors may prevent from generating coastal indicators with sufficient accuracy. During POC activities the 

georeferencing accuracy will be addressed and performing an additional georeferencing for specific couples (sensor; POC 

site) with GCP selected by consortium partners might appear as necessary. 

 General limitations 

Production of coastal indicators using optical imagery will not be always possible due to the cloud coverage sometimes 

overlapping the POC sites. This might not be a major limitation for indicators that can also be produced using SAR-based 

algorithms, such as the waterline, the beach width, dune and cliff lines (extracted from SAR-derived DEM). 

The seabed cover mapping and bathymetry (through water colour inversion) products needs clear water to be generated. 

This requirement is not always met in most coastal areas and even rarely in areas with high hydrodynamics (strong current, 

energetic waves) and/or under river influence with discharge of fine suspended particulate matter, which both decrease 

the water transparency. Although several non-cloudy images per year are acquired over the POC sites concerned by these 

coastal indicators, the production frequency production achievable might be limited to few products per year at some 

sites. 

The tide effect can also represent a limitation as it drives large cross-shore fluctuations of the landward extension of the 

water body. This makes some image-extracted indicators irrelevant to monitor coastal erosion if not produced under 

specific constrains such as using only images acquired at high tide for the waterline indicator in macro- and mega-tidal 

coastal areas. 

 Image resolution  

This section makes the inventory of the resolution of the optical (Table 4-1) and SAR (Table 4-2) images associated with 

the different satellite sensors and image production modes that were preliminary identified to conduct the POC activities. 

Additional sensors may be used according to the availability of images at specific sites for specific dates. 

Table 4-1 – Resolution of multispectral image acquired from different optical sensor. (ps) indicates that panchromatic 
sharpening has been used to enhance the original image resolution.   

Image 

resolution (m) 
0.5 1.5 5 6 10 15 20 

Optical image 

source 

Pléiades 

1A/1B 

SPOT6 (ps) 

SPOT7 (ps) 
SPOT5 (ps) 

SPOT6 

SPOT7 

Sentinel-2, SPOT5, 

SPOT4 (ps) 

Landsat 7 (ps) 

Landsat 8 (ps) 
SPOT1-4 

 

 

 

 

 

2 Gascon et al., 2017. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sensing, 9, 584. doi:10.3390/rs9060584. 

3 Yan, L., Roy, D.P., Zhang, H., Li, J., Huan, H., 2016. An Automated Approach for Sub-Pixel Registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi 
Spectral Instrument (MSI) Imagery. Remote Sensing, 8, 520, doi:10.3390/rs8060520. 



Space for Shore – Technical Specification v.1.1 

 

Page | 66 

 

Table 4-2 – Resolution of SAR image acquired from different SAR sensor.  

Image resolution (m) 3 8 x 4 (rg x az) 15 

SAR image source 
TerraSAR-X, TanDEM-X 

Cosmo-SkyMed 
ERS1-2 SAR, 

ENVISAT ASAR  
Sentinel-1 

 

4.3 Cliff lines 
The analysis of collected end-user needs have shown that for the “shoreline” family of products, the most cited ones are 

the cliff foot and cliff apex. Indeed, both cliff foot and apex have received a high score (9 citations each) and that makes 

the provision of these products a necessity among coastal managers. 

In particular, in the cases of rocky coasts end-users are asking for the monitoring of cliff foot and cliff apex, with a 

planimetric accuracy of 1-5 m in average, which indeed is enough to provide adequate quantification of cliff retreat. 

Meantime, for coastal rocky cliffs, some end-users requested products that allow the monitoring of cliffs’ morphological 

change. Specifically, for the French POCs, New Aquitaine region and South-west France, the requested products allow to 

track the morphological change of the cliff front, including erosion scar development cliff front area and slope change, and 

material volume displaced by past landslides. The knowledge of these changes provides a better understanding of the 

dynamics of eroding cliffs, in particular in the French and Greek POC areas, where several critical infrastructures are located 

nearby eroding cliffs. Such products are expected to be produced and delivered 2 times per year (before and after the 

winter) with a 2-m planimetric accuracy. The end-user also requested the products to be generated before and after every 

oceano-meteorological event (energetic aggressive waves, heavy rains), which may occur at least 6 times a year. 

The consortium members address the previously specified indicators with the proposed algorithms: 1a/1b-3c/3d and 3i. 

In particular, 1a is constituted by a set of algorithms for DEM generation deployed on VHR optical imagery, validated during 

commercial projects for different morphologies with a relative horizontal accuracy of 1 meter and a relative vertical 

accuracy of 2-3 meters. Indeed, this is compliant with the need expressed by the end-users for horizontal accuracy of 1 

meter and a vertical 1-5 meters. 

Algorithm 1b proposes DEM generation from SAR data, also validated during commercial projects, with RMSE of 8.2 meters 

using TanDEM-X data. POC sites with end-users requesting DEM generation can make use both of 1a and 1b algorithms, 

where also a further investigation on firing users need will be made (mostly for 1b). 

The “family” 3 of algorithms, include key indicators useful to assess the morphodynamics of different subaerial areas along 

the rocky coasts and to mitigate risks related to erosion processes. Algorithm 3c relies on the availability of a DEM that 

includes the cliff face and part of the subaerial domains seaward and landward the cliff face so as to have the cliff foot and 

apex within the DEM. The DEM can be using VHR optical images or from interferometry using VHR SAR images. The 

proposed algorithm for cliff foot extraction relies on a DEMs provided over a regular mesh and is expected to be able to 

detect automatically a reference line following locally the overall cliff face orientation. However, if this part of the 

algorithm lacks robustness, it may be necessary to provide the reference line or the transects for each POC site. We have 

to note that 3c algorithm has not yet been validated, while it will be further tested in the POC. 

Algorithm 3d is relying on the manual linear feature extraction deriving from DEMs with the use of VHR optical data. 

Validation of algorithm has been performed during past projects with results of 2-3 times the pixel size accuracy, which 

for the case of Pleiades data (0.5m resolution) it could be around 1.5-2meters which is compliant with the end-users’ 

needs. 

Algorithm 3i is based on supervised classification of the spectral signature of the different types of ground cover at sites 

where the transition between specific types of cover can actually locates the cliff foot or cliff top line. Algorithm 3i is quite 

experimental, relies on HR imagery and is expected to reach a maximal accuracy of the order of the image resolution. This 

usually does not match with end-user expectations. 



Space for Shore – Technical Specification v.1.1 

 

Page | 67 

 

Table 4-3 - Requirements for indicator "Cliff" for POC sites where interested end-users have been interviewed.  

Country 
Coastal 
region 

POC sites 

Accuracy (m) 

Production 
frequency (yr-1)  

exact dates 

Suggested combination of 
algorithms and EO data 

Horizonta
l 

Vertica
l 

Algorith
m 

Imag
e 

reso. 
(m) 

Comment
s 

France 

Normandy 

Calvados 1 1-5 
1/5-ems 

(2012, 2016) 

1a/1b-
3c/3d 

1 

Probably 
usage only 

of 
1a(alg),3d 

Seine-
Maritime 

1 ng 
1/5-ems 

(2012,2016) 

1a/1b-
3c/3d 

1 

Probably 
usage only 

of 
1a(alg),3d 

Nouvelle 
Aquitaine 

Corniche 
Basque 

1  ng 

2(during spring 
water low tider,1 

before&1 after 
winter) 

1a/1b-
3c/3d 

1  

Erretegia 
cliffs 

1  ng 
2 

(11/2017,01/2018,3
-4/03/2019) 

1a/1b-
3c/3d 

1  

Greece 

Eastern 
Macedoni
a & Thrace 

Vistonis-
Maroneia 

1 1-5 1-10 
1a/1b-
3c/3d 

1  

Eastern 
Macedoni
a & Thrace 

Evros Delta 1 1-5 1-10 
1a/1b-
3c/3d 

1  

German
y 

Baltic Sea 
Brothener 

Cliff 
10 ng 1 

1a/1b-
3c/3d 

10 

Optical in 
case of 

high 
vegetation 

on cliff 
edges 

Baltic Sea 
Schönhagene

r Cliff 
10 ng 1 1a-3d 10  

Portugal 
From 

Porto to 
Peniche 

Alcobaça 
coast 

Aveiro coast 

1 ng 2 post storms 
1a/1b-
3c/3d 

1  

1 ng 2 -post storms 
1a/1b-
3c/3d 

1  

 

The methodology based on DEM and supervised classifications from VHR images cannot be used for investigating cliff 

changes over the last 25 year, as the development of regular acquisitions of VHR images essentially started these last 10 

years. Although the end-users usually desire meter-scale accuracy for the detection of cliff lines and changes for recent 

and future periods, they may be still interested in obtaining the quantification of the overall cliff retreat over the last 25 

years. Thus, algorithm 3i will also be used in combination with HR at sites where the conditions of application of this 

algorithm are met. This will include at least the extraction of the cliff foot at Erretegia and the cliff top at Seine-Maritime 

POC site. Long-term cliff foot changes at Erretegia will be investigated using images from SPOT1-5, Sentinel-2, ERS-1/2, 

ENVISAT and Sentinel-1 sensors. Long-term cliff top at Seine Maritime POC site will be investigated using images from 

SPOT1-5, Landsat 7/8 and Sentinel-2 sensors. 
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4.4 Dune foot 
Four distinct algorithms (3a, 3b, 3d and 3h) have been proposed by the consortium members to address the end-user 

needs for production of the dune foot line, which represents one of the most relevant proxy of the shoreline position along 

sandy coasts on the interannual to longer timescales. 

The requirements for this indicator collected during end-user interviews are exhaustively listed in Table 4-4 per POC sites. 

A metrical accuracy is requested by end-user for coastal areas experiencing regular and potentially large dune erosion 

events, such as observed in SW France and in NW Portugal. In the Mediterranean Sea sites where dune foot change rates 

are smaller due to lower energy wave conditions, such as for the Greek POC sites, an accuracy of 5 m is required. End-

users from French and Portuguese POC sites are interested in a seasonal monitoring (before/after winter/summer and end 

of winter/summer, respectively) while Greek end-users will be satisfied with an annual monitoring. A post-storm 

monitoring mode is also asked by Portuguese end-users, which would represent 2-4 additional products to be derived per 

year. 

While algorithm 3a and 3b are semi-automated approaches requiring a limited intervention from the operator (single 

calibration per sites + assisted removal of detection outliers), algorithm 3d is a fully manual digitizing process that requires 

a high level of expertise from the operator and time. Algorithm 3h also required a significant intervention from the 

operator to build the reference database used by the classifier. However, apart from this initial intervention the method 

remains almost automated. For coastal areas with well-developed and regular foredunes (alongshore homogeneous and 

pretty rectilinear) such as in SW France or NW Portugal, algorithms 3a, 3b and 3h represent efficient tools and should be 

used, while for coastal areas presenting low amplitude dunes and tortuous coastlines algorithm 3d should be preferred as 

(semi-) automated approach may lead to numerous detection outliers and would requires to handle a lot of specific cases. 

As the transition between the upper beach and the dune system (where the dune foot is located) often extends 

horizontally over spatial scales of few meters to ten meters, only the use of VHR EO data (resolution ≥ 5 m) are envisaged 

when addressing changes on the event (storm), seasonal and annual scales. Algorithm 3i, which relies on HR data, appears 

as not really relevant with respect to the end-user expectations.  

The use of the algorithm 3a in combination with VHR EO data such as Pléiades imagery led to a dune foot detection with 

an usual accuracy of 5 m. The use of the algorithm 3b with DEM derived from stereo or tri stereo Pléiades imagery is 

expected to lead to a similar accuracy or even better (2-5 m). Finally, the digitizing approach (algorithm 3d) used for cliff 

line detection have shown accuracy of 3-4 times the resolution of the VHR images used to compute the cliff DEM. In case 

ground control points were available to improve the DEM positioning, an accuracy of 2 m has been reached. But due to a 

lower number of patterns of recognition within dune systems, dune DEMs are expected to be of lower accuracy than cliff 

DEMs. Thus, the use of algorithm 3d for dune foot detection should lead to a maximal accuracy of 5 m. All in all, these 

three algorithms seem to offer similar accuracies. 

The computation of DEM requires a pair or more of images with specific requirements that are not always fulfilled, which 

makes the algorithm 3b and 3d hardly relevant regarding a production frequency higher than one per year. In contrast, 

the algorithm 3a only requires a single image for every application, offering more potential for high production frequencies 

(several per years). 

With the algorithms proposed by the consortium and current image availability, the end-user requirements may be 

satisfied only for the Greek POC site. For French and Portuguese POC sites, the requested production frequency should be 

fulfilled using algorithm 3a, whereas the expectation in terms of horizontal accuracy might not be reached with the 

proposed algorithms. However, within the POC activities validation works will be performed to assesses carefully the final 

product accuracy, which will then be presented to French and Portuguese end-users for possible compromises on their 

initial requirements. Note that, when possible algorithm 3b will be used in parallel to 3a to see if a possible improvement 

in accuracy is reached by using geometrical analyses on elevation profiles from DEM rather than textural analyses on single 

optical image. 
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Table 4-4 - Requirements for indicator "Dunes foot" for POC sites where interested end-users have been interviewed. 

Country 
Coastal 
region 

POC sites 

Accuracy (m) 
Production 

frequency (yr-

1)  

exact dates 

Suggested combination of algorithms 
and EO data 

Horizontal Vertical Algorithm 
Image 

reso. (m) 
Comments 

France Aquitaine Biscarrosse 1 - 

4 

Feb.; Jun.; 
Aug.; Nov. 

3a 0.5/1.5 

Use of 3b 
when DEM 

can be 
produced  

Greece 
Eastern 

Macedonia 
and Thrace 

Vistonis-
Maroneia 

5 - 1 3d 0.5/1.5/3 

Production 
frequency is 

not 
guaranteed 

due to 
possible low 
availability of 

(tri)stereo 
images 

Portugal 
Northwest 

coast 

North of 

Aveiro lagoon 

and south of 

Aveiro lagoon 

1 - 

2 

End of summer 
and winter 

3a 0.5/1.5 

Use of 3b 
when DEM 

can be 
produced 

1 - 

ng (2-4) 

Post-storm 
production 

3a 0.5/1.5 

Use of 3b 
when DEM 

can be 
produced 

 

The methodology based on DEM or supervised classification from VHR images cannot be used for investigating dune 

changes over the last 25 year, as the development of regular acquisitions of VHR images essentially started these last 10 

year.  Although the end-users usually desire meter-scale accuracy for the detection of dune change for recent and future 

periods, they may be still interested in obtaining a rough quantification of the dune retreat over the last 25 years. Thus, 

algorithm 3h will also be used in combination with HR at sites where the conditions of application are met. This will include 

at least the extraction of the dune foot at Biscarrosse and at South Aveiro Lagoon. Long-term / large-scale dune foot 

changes at Biscarrosse and at South Aveiro Lagoon will be investigated using images from SPOT1-5, LANDSAT 7/8 and 

Sentinel-2 sensors. 

4.5 Water lines 
Water lines represent an important indicator for stakeholders involved in coastal monitoring and prevention activities. In 

order to address user needs, the consortium proposes 4 algorithms for water line extraction (2a, 2b, 2c, 2d). There are 

three proposed methods for optic data (Water Line Detection using band ratios, Water Line Detection using NDWI, Water 

Line Detection using a supervised classification process) and one for SAR data (Water Line Detection using binary products 

from SAR amplitude data).  

The user requirements for “water line” for every POC are presented in Table 4-5. Validation work performed for the 

algorithms that extract waterline from optical images does not fully match the accuracy requested by users, except the 

Vistonis-Maroneia POC site from Eastern Macedonia and Thrace. Apart from this POC site, the end-user requested an 

accuracy better than 5 m. Further adaptation of the methods on very high-resolution images could lead to improved 

results. Even so, it may not be possible to obtain accuracies of 1 m or higher, which is requested within 5 POC sites. 

Regarding the frequencies, in all POC sites except Romania, there are one or two requests per year. In Sulina- Sfantu 

Gheorghe POC users demand water line monthly, while in 2 Mai – Vama Veche the frequency is 4 per year. Revisiting time 
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of satellite should successfully fulfill the end-user requirements regarding frequencies. For POCs in the Romanian coastline 

which requested monthly products, SAR data could be used in case no optical image will not be available due to cloud 

contamination. 

 

Table 4-5 - Requirements for indicator "water line" for POC sites where interested end-users have been interviewed 

Country 
Coastal 
region 

POC sites 

Accuracy (m) Production 
frequency (yr-

1) 

exact dates 

Suggested combination of 
algorithms and EO data 

Horizontal Vertical Algorithm 
Image 
reso. 
(m) 

Comments 

Greece 
Eastern 

Macedonia 
and Thrace 

Evros Delta 1 (0.5) - 0.5 
2a, 2b, 2c, 

2d 
5/8/10  

Vistonis-
Maroneia 

10 - 1 
2a, 2b, 2c, 

2d 
5/8/10  

Germany 

North Sea Sylt Odde 

1 - 

1 

(2011, 2012, 
2013, 2014, 
2015, 2016, 
2017, 2018, 
2019, 2020) 

2a, 2d 1-10 

Algorithm 2d 
may be used 

if no optic 
image is 

available. 
VHR data will 

be tested 
during POC. 

Baltic Sea 
Kiel Probstei 

Sylt Odde 

Romania 
All 

coastline 

Sulina- 

Sfantu 
Gheorghe 

3 - 
12 

(2017-2018) 
2b, 2d 5/10 

Algorithm 2d 
may be used 

if no optic 
image is 
available 

1 - 12    

5 - 

12 

(from 2015 to 
present) 

2b, 2d 5/10 

Algorithm 2d 
may be used 

if no optic 
image is 
available 

2 Mai – 

Vama Veche 
<1 - 4 2b, 2d 5/10 

Algorithm 2d 
may be used 

if no optic 
image is 
available 

 

4.6 Middle of swash zone 
The swash zone is that part of the beach alternately covered and exposed by uprush (onshore flow) and backwash (offshore 

flow), respectively. The middle of the swash zone can be approximated by the average of the waterline position over a 

time period of the order of some minutes, that is, the typical time scale of a wave set driving this phenomenon. Along 

coasts experiencing large tidal ranges, this location of this virtual line can easily vary within a tidal cycle from tens to 

hundreds of meters. This indicator only make sense as a shoreline proxy if computed at high tides. It would then correspond 

to the Mean High-Water Level (MHWL) shoreline proxy commonly used at sites presenting large tidal ranges. For micro 

tidal coasts, the cross-shore variation of the middle of swash zone during a tidal cycle remains low (of the order of 10m) 

making this proxy relevant to address shoreline change. 
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Based on the end-user requirement compilation (Table 4.6), in PACA region (SE France) an accuracy of 1-5 m is requested 

along with production frequency for seasonal, bi-monthly (from October to June) and post-storm (before/after) 

monitoring. The bi-monthly production represents a total of 18 product per year. Because of the variability in yearly storm 

occurrence and different levels of coastal resilience to storms, the production associated with the post-storm monitoring can 

vary a lot from one year to another. Based on a minimal number of major storms of 2-4 per year, the post-storm monitoring 

represents a total of 4-8 products a year. In Romania, an accuracy of 3-5 m with a monthly production frequency is required 

by end-users. 

No specific algorithm has been proposed for this indicator by consortium partners. For microtidal environments, averaging 

several waterlines extracted using algorithms (2a,2b,2c,2d) based on subsequent EO data may allow computing a 

composite water line that may certainly fit well with the middle of swash zone proxy measured on the field. The time 

period used to compute the composite waterline have to be short enough to ensure that no significant erosion or accretion 

events have occurred. The advantage of using algorithm 2c, which relies on SAR imagery, is that for every image available 

a waterline can be produced independently from the cloud coverage. The use of both optical- and SAR-based algorithms 

is required to reach the high production frequencies requested by the end-users. Regarding optical algorithms, the best 

algorithm candidate would be the algorithm 2b as soundful validation works have shown an overall sub-pixel accuracy. 

Using VHR EO data should allow fulfilling the end-user requirements in terms of accuracy.  

Algorithm 3a may also be useful to retrieve the middle of the swash zone from VHR optical data for microtidal regions. 

 

Table 4-6 - Requirements for indicator "Middle of swash zone" for POC sites where interested end-users have been 
interviewed.  

Country 
Coastal 

region 
POC sites 

Accuracy (m) Production 

frequency (yr-1) 

exact dates 

Suggested combination of algorithms and EO 

data 

Horizontal Vertical Algorithm 
Image reso. 

(m) 
Comments 

France PACA 

Bays of 

Hyères, 

Saint-

Raphaël 

and Nice, 

and 

Camargue 

1-5 - 

2-3 

Sept./Oct.; Jan.; 

May/Jun 

3a, 2b, 2d 0.5/1.5/3/5 - 

1-5 - 

18 

Fortnightly from 

Oct. to Jun. 

3a, 2b, 2d 0.5/1.5/3/5 - 

1-5 - 

4-8 

Before/after storm 

event 

3a, 2b, 2d 0.5/1.5/3/5 - 

Romania All coastline 

Romanian/ 

Danube 

Delta 

Littoral 

ng (3-5) - 

 

ng (12) 

 

3a, 2b, 2d 0.5/1.5/3/5 - 

   

As for dune foot and cliff line indicators, production of the middle of swash zone will also be tested using HR images from 

SPOT1-5, LANDSAT 7/8, Sentinel-2, ERS-1/2, ENVISAT and Sentinel-1 sensors to allow addressing changes of this indicator 

over the targeted period of 25 years. 
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4.7 Maximum swash excursion during major storms 
Several strategies shall be envisaged to derive maximum run-up (or swash) excursion during storms. These strategies 

will depend on the proxy chosen to identify the indicator and also on the capacity to obtain relevant images during 

of within the days following the storms. 

As shown in the Requirement Baseline, the position of the maximum run-up (or swash) excursion over the beach, as 

reached by water during storm events has been cited are cited 13 times in the collected requirement forms, in France 

and in Romania. End-users are requiring a metric planimetric accuracy in the range of 1-5 m. In Romania, they require 

the detection of the run-up limit after individual storms, and, in France, during or within the few days consecutively 

to severe storm events. The detection service would be activated upon request in case of emergency and/or major 

storm events. In France, the location of the “pied de l’escarpement » is chosen as the indicator of maximum storm 

excursion. This proxy could be extracted within the hours / days following the storm. During the storm another 

proxies must be envisaged: the waterline.  

Finally, a few days / weeks after a storm, it may be interesting to use as a proxy the change in land cover before / 

after storm. However, this option has not been requested from the end-users.  

The location of the “pied de l’escarpement » (rapid change in altitude) could be extract from DEM (algorithms 1a 

and 1b) or from optical image texture analysis (algorithms 3a). However, with regards to end-user requirements, 

and in particular with regards to the expected planimetric accuracy, very high-resolution optical imageries would be 

the only data acceptable to retrieve the maximum swash excursion in PACA region.  

Various algorithms exit to retrieve the waterline, based on SAR and optical data. All VHR sensors should be used 

simultaneously to multiply the chance to get an exploitable image at the time of the storm maximum. This 

necessitates to order image a few hours before the storm (emergency mode). Eventually, in submerged regions, the 

acquisition of relevant data can be made even a few hours / days after the storm. The waterline will continue to 

indicate the maximum run-up excursion during the past storm. This option has not been cited by the focussed end-

user but may be relevant in other regions. 

 

Table 4-7 - Requirements for indicator "Maximum swash excursion " for POC sites where interested end-users have been 
interviewed.  

Country 
Coastal 
region 

POC sites 

Accuracy (m) 
Production 
frequency 

(yr-1)  

exact 
dates 

Suggested combination of 
algorithms and EO data 

Horizontal Vertical Algorithm 
Image 
reso. 
(m) 

Comments 

France PACA 

Hyères, Saint-
Raphaël and 

Nice, and 

Camargue 

1 – 5 m  
During 
storm 
events 

1a, 3a < 5 m 
Proxy : “Pied 

de 
l’escarpement” 

Romania 
All 

coastline 

Romanian/ 
Danube Delta 

Littoral 
3 – 5 m  

During 
storm 
events 

1a, 3a 

2a  => 2e 
< 5 m 

Proxy : “Pied 
de 

l’escarpement” 
a few hours 
days after 

storm 

Waterline 
during the 

storm (image 
acquisition not 

guaranteed) 
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4.8 Submerged sandbars 
Nearshore sandbars could represent a natural protection system against erosion and maximum run-up limit in case of an 

extreme event. Two algorithms are proposed (6a and 6b) by the consortium addressing this issue. They were both tested 

on two POC sites, 6a in Sulina-Sfantu Gheorghe sector and 6b in the south part Sylt Odde island. The validation work 

performed for 6a algorithm showed good results for water line extracted from Sentinel-2 data. The use of higher-resolution 

images may increase accuracy.  

 The user requirements for “submerged sandbars” for every POC are presented in Table 4-8. Results of the validation work 

are in line with the accuracy requested by end-users (10 m horizontal accuracy). As presented in Table 4-8 algorithm 6a 

will be used for Sulina-Sfantu Gheorghe POC and 6b for Kiel/Probstei, respectively. For the other POCs, none of the 

methods were tested yet, but both will be taken into consideration and the one with the most promising results will be 

chosen. The production frequency requested by end-users should be met for all POCs, except the Sulina-Sfantu Gheorghe, 

where it may be influenced by the availability of cloud free images or the occurrence of high turbidity values. 

 

Table 4-8 - Requirements for indicator "Submerged sandbars" for POC sites where interested end-users have been 
interviewed.  

Country Coastal region POC sites 

Accuracy (m) 
Production 

frequency (yr-1)  

exact dates 

Suggested combination of 
algorithms and EO data 

Horizontal Vertical Algorithm 
Image 
reso. 
(m) 

Comments 

France New Aquitaine 

Biscarrosse 
beach 

ng (5-10) - 2 6a, 6b 10 

Not 
applied 

yet in this 
POC. 

Bidart central 
beach 

Erretegia cliffs 
5-10 -  3 6a, 6b 10 

Not 
applied 

yet in this 
POC. 

Greece 
Eastern 

Macedonia 
and Thrace 

Vistonis-
Maroneia 

5-10 - 0.3 6a, 6b 10 

Not 
applied 

yet in this 
POC. 

Germany Baltic Sea Kiel/Probstei 10 - 

1 

(2011, 2012, 
2013, 2014, 
2015, 2016, 
2017, 2018, 
2019, 2020) 

6b 10 - 

Romania All coastline 

Sulina- 

Sfantu 
Gheorghe 

10 - 
12 

(since 2015) 
6a 10 - 

 

4.9 Beach width 
End-users from New Aquitaine region (SW France) requested the cross-shore distance between wet/dry sand interface to 

the dune foot (i.e. upper beach width), between wet/dry sand interface and the water line at the low tide (i.e. lower beach 
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width) and between hide tide waterline and the dune foot (i.e. high tide beach width to get the usable beach width at high 

tide). The tidal level at the time of image acquisition is required to assess the type of beach width that is computed. 

Additionally, one end-user from Normandy region (N France) requested the width of shingle deposits (shingle bands) down 

the cliffs/dunes and lying either on sandy or rocky bottoms.  

Based on the end-user requirement compilation (Table 4.9), an accuracy of 1-5 m is usually requested for seasonal 

monitoring of sandy beach width. One end-user (coastal expert) also requested production of this indicator for every 

usable HR image from Sentinel missions to monitor easily hotspots of erosion in coastal areas similar and adjacent to 

Biscarrosse beach. This represents more or less a weekly production frequency. Regarding the width of shingle bands, an 

ideal accuracy of 0.5 m is desired by the end-user, but an accuracy of 1-5 m could still bring relevant information. As for 

sandy beach, the width of shingle bands should be produced on a seasonal basis, though an annual production frequency 

remains acceptable for the end-user. Specific dates have also been requested for comparison with end-user validation 

data. 

One algorithm (3e) has been proposed by the consortium members to address the end-user needs for estimation of beach 

width and analysis of date-to-date beach width changes. This algorithm is only destinated to compute the useable beach 

width, that is the cross-shore distance between the high tide waterline and the landward reference line. The other types 

of beach width are disregarded as to the author knowledge the wet/dry line is a visual pattern that rapidly evolve according 

to sun exposition and wind conditions and can be affect by the water table height. The algorithm 3e has not been validated 

yet but the implementation of the algorithm will be quite straightforward without many specific cases.  

The horizontal accuracy of this algorithm depends on both the accuracy of the waterline and the reference line. If the 

reference line was provided by the end-user (no spatial error) and not derived from satellite imagery, the accuracy would 

reduce to the accuracy of the water line extraction algorithm, which usually is of the order of the image pixel resolution 

(sub-metric to pluri-metric). Using VHR EO data to extract waterline and subsequently to compute the width of sandy 

beaches should allow to fulfil the end-user requirements for the seasonal monitoring.  

For the monitoring of hotspots of erosion, it may be difficult to achieve the weekly production along with the 1-5 m 

accuracy without tasking weekly acquisition from VHR satellite sensor, a costly operation which is also likely not possible 

due to choices in tasking priority made by the satellite owners. The use of HR EO data from Sentinel-1/2 would certainly 

match with the production frequency, but not with the accuracy expected. Anyway, this will be tested and presented to 

end-users.  

Algorithm 3e does is not adequate to compute the width of shingle bands and an alternative algorithm should be applied. 

The shingle areas over the beach and rocky platforms need first to be extracted using classification algorithms (5a, 5b, 5c) 

including a shingle class among others. Then, the cross-shore distance from one boundary (landward boundary) to the 

other (seaward boundary) of the shingle patches could be computed alongshore. As shingle spectral signature can be close 

to sand and rocky platform signatures, large errors could arise and only a good knowledge of the ground reality can lead 

to accurate classification. This source of error could be still reduced for the sand/shingle ambiguity using SAR images since 

shingle has more rugosity than sand. An attempt of production of shingle band width will be made at the date for which 

validation data exists. 

 

Table 4-9 - Requirements for indicator "Beach width" for POC sites where interested end-users have been interviewed.  

Country 
Coastal 

region 
POC sites 

Accuracy (m) Production 

frequency (yr-1) 

exact dates 

Suggested combination of algorithms and EO data 

Horizontal Vertical Algorithm 
Image reso. 

(m) 
Comments 

France 
New 

Aquitaine 

Biscarross

e beach 
ng (1-5) - 

4 

Nov.; Feb.; Jun.; 

Aug. 

3e 0.5/1.5/3/5 - 
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5-10 - 
52 

weekly 
3e 10/15 

For erosion hotspot 

monitoring. Cannot 

be guaranteed due 

to potential 

unavailability of EO 

data 

Bidart 

central 

beach 

1-5 - 

4 

Before/after 

winter/summer 

3e 
0.5/1.5/3/

5 
- 

Normandy 

Calvados 
POC site 

Seine-
Maritime 
POC site 

0.5-5 - 
1 

(2006; 2009) 
5a, 5b, 5c 0.5/1.5/3/5 

Width of shingle 

bands. 

Experimentation with 

classification 

algorithms will be 

made. 

0.5-5 - 

1-4 

(annually or 

seasonally) 

- - 

Width of shingle 

bands. 

Limit: No guarantee of 

success with any of 

the proposed 

algorithms. 

 

As for other indicators (dune foot, cliff lines, middle of swash zone) production of the beach width will also be tested using 

HR images from SPOT1-5, LANDSAT 7/8, Sentinel-2, ERS-1/2, ENVISAT and Sentinel-1 sensors to allow addressing changes 

of this indicator over the targeted period of 25 years. This will be done at sites where large variation of the beach width 

were observed to ensure the detection of a signal of beach width changes. 

4.10 Tidal flat morphology: erosion at tidal creek edges and tidal creek characterization 
Three algorithms are proposed to work on intertidal flat areas. Two of them are proposed for the detection of erosion at 

tidal creek edges, of which one is based on SAR data (2e), the other one on optical data (5c). Both algorithms might be 

combined in the end in order to retrieve the most reliable information from them. One algorithm is dedicated for the 

characterization of tidal creeks, such as number of creeks and creek endings (3g). All algorithms used in conjunction provide 

the information needed for the indicator for erosion in intertidal flats.  

The morphological characterization has been asked by one user in Germany and the test sites that are concerned are 

located in the German part of the Wadden Sea at the Schleswig-Holstein North Sea Coast. The user was designing an own 

group of indicators that he called WASERI (Wadden Sea Erosion Indicator). The user requirements horizontal accuracy of 

the morphological intertidal products was specified with 10 meters, which requires the at least Sentinel-2 data, but also 

the application in VHR data are suggested. Especially for the creek headings, VHR data is needed. A vertical accuracy is not 

applicable as the focus is on lateral changes and no vertical information is provided by the products. The information shall 

be available once a year. The reference year shall e 2001, while the years for assessing the changes are requested to be 

2011-2020 (yearly basis). 

Algorithm 2e and 5c have been applied already to a number of images of dry-fallen intertidal flats, but the application for 

coastal erosion is a new aspect in the interpretation of the results. Therefore, some adjustments are expected for 2e and 

5c. Validation was performed on the outcome of the algorithms with in situ data but not for coastal erosion, yet. The 

validation will be performed within the POC and the user will provide products derived from laser scan data as reference. 

The algorithm 3g for the tidal creeks characterization (heads, endings) has not been applied yet and has an experimental 

character. As this algorithm is on its very beginning, it is not yet clear if it will fulfil the user requirements.  
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The user for the intertidal indicators has experiences with remote sensing products, and it is expected that the algorithm 

is developed in close cooperation with the user. This ensures a good balance between expectations and realistic 

assessment of the products. 

 

Table 4-10 – Requirements for indicator "Tidal flat morphology" for POC sites where interested end-users have been 
interviewed.  

Country 
Coastal 
region 

POC sites 

Accuracy (m) 
Production 

frequency (yr-1)  

exact dates 

Suggested combination of algorithms 
and EO data 

Horizontal Vertical Algorithm 
Image 
reso. 
(m) 

Comments 

Germany 

North 
Sea 

Wadden 
Sea 

Blauortsand 

10m na 

1/yr 

2011, 2012, 
2013, 2014, 
2015, 2016, 
2017, 2018, 
2019, 2020 

2e, 5c, 3g 
10m 

or 
higher 

A combination 
of all three 

algorithms is 
envisaged in 

order to 
address the 

user 
requirements. 

Nordstrand 

Medemgrund 

4.11 Bathymetry 
Three distinct algorithms (4a, 4b and 4c) have been proposed by the consortium members to address the end-user needs 

for production of bathymetry maps and analysis of date-to-date bathymetric changes. End-users essentially requested the 

bathymetry to cover shallow depths, that is from 0 to approximately 10-m deep. 

Algorithm 4c (wavelength inversion) has been validated for depths ranging from 15 to 30-m deep. This does not really 

match the needs expressed explicitly by the end-user, although some might still be interested in knowing the bathymetry 

in deeper waters. Nevertheless, for algorithm 4c, an alternative approach based on wavelet transform (WT) instead of the 

Fourier transform may upgrade this algorithm to inverse depths in shallower waters (ex. 1 – 10 m depth). Since wave crest 

inversion is necessary where water is turbid or water surface is rough, algorithm 4c with WT may be considered for POC if 

validation data can demonstrate the accuracy of the results. 

Apart from this potential experimental demonstration of algorithm 4c, the POC will principally focus on two other 

algorithms (4a, 4b) (water color inversion) to retrieve bathymetry in shallow waters. Their capability to fit the end-user 

requirements are here assessed. 

The requirements for the indicator “Bathymetry” collected during end-user interviews are exhaustively listed in Table 4-11 

per POC sites, providing the clear picture of the full range of requirements we have to address. 

In short, a higher horizontal and vertical accuracy (2 m and 0.2- 0.5 m, respectively) is usually requested for sites with weak 

hydrodynamics and morphodynamics, while a lower accuracy remains (5-10 m and 0.5-1 m, respectively) acceptable for 

highly-dynamic sites where submerged sandbars are typically of larger characteristic length.  

A great variability in the requested production frequencies is observed. For most sites production a typical seasonal 

motioning with 2-3 bathymetries per year is a common request: one at the end of the winter (March-April); one at the end 

of the summer (September-October); and eventually another one during the summer (July-August). An emergency/post-

storm monitoring – production of a bathymetry after each major storm – has also been requested at some sites. Due to 

variability in yearly storm occurrence and different levels of coastal resilience to storms, the production efforts can vary a 

lot from one site to another and from one year to another. Nevertheless, it is assumed that this monitoring mode would 

represent at least the production of 2-4 additional bathymetries per year. At the other end of the spectrum, a monitoring 

for long-term monitoring analysis has also been requested. This consists in the production one bathymetry every 3-5 years. 

Because on these timescales the morphological change is expected to be larger than for the yearly/seasonal monitoring, 

end-users would readily accept the delivery of the bathymetry with lower horizontal and vertical accuracy. 
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The algorithms 4a and 4b show vertical accuracy in the range of 0.3-1 m and 0.6-1.3m, respectively. This indicates that 

both methods could fit most of the end-user requirements, except for high-frequency surveys of Bays of Hyères, Saint-

Raphaël and Nice. However, for annual surveys, a lower accuracy range is acceptable for these end-users. 

Concerning the horizontal accuracy, this is essentially related to the sensor resolution and image pixel georeferencing 

accuracy. Assuming a perfect georeferencing, the Table 4-1 gives the horizontal accuracy that could be obtained from the 

different optical sensors investigated during phase 1. Here the end-user requirements can be easily satisfied as long as the 

images are reachable. 

In theory the revisiting time of satellite considered for phase 1 are short enough to fulfill production frequencies requested 

by end-user. Although a large number of those are useless due to the presence of clouds, turbid waters, breaking waves, 

several per year are of high quality for algorithm application. Thus, the seasonal, annual and long-term production 

frequencies seem achievable over most areas. Successful demonstration has been carried out in most regions; however, 

images shall be checked to show that algorithms 4a and 4b can be safely deployed at Bidart central beach Erretegia cliff, in 

Normandie and along the Portuguese coast, where turbid waters are recurrent. 

In addition, the post-storm production cannot be guaranteed, as after storms clouds may be still present and turbid waters 

usually persist several days to some weeks, preventing from algorithm application. Finally, note that the algorithm 4a 

requires some input bathymetric data measured at the date of image acquisition (or close date) for calibration. Thus, it 

will be impossible to use this algorithm for sites where no any bathymetric measurement (with enough metadata) have 

been made, which potentially represent a large number of sites. For each POC sites where the indicator “Bathymetry” is 

requested a combination of algorithm with EO data type is proposed when it truly fits with end-user requirements. 

 

Table 4-11 - Requirements for indicator "Bathymetry" for POC sites where interested end-users have been interviewed. 

Country 
Coastal 
region 

POC sites 

Accuracy (m) 
Production 

frequency (yr-1)  

exact dates 

Suggested combination of 
algorithms and EO data 

Horizontal Vertical Algorithm 
Image 
reso. 
(m) 

Comments 

France 

New 
Aquitaine 

Biscarrosse 
beach 

5 - 10 0.5 - 1 2 4b 5/6/10 

Possible 
replacement 
of 4b by 4a at 
specific dates 

Bidart central 
beach and 

Erretegia cliff 
5 1 

3 

Sept./Oct.; Apr.; 
Jul./Agu. 

4b 5 

Possible 
replacement 
of 4b by 4a at 
specific dates 

Normandy 

Calvados POC 
site 

Seine-
Maritime POC 

site 

10 0.4 - 1 ng (2) 4b 5/6/10 

Possible 
replacement 
of 4b by 4a at 
specific dates 

PACA 

Bays of 
Hyères, Saint-
Raphaël and 

Nice 

2 0.5 1/3 - 1/5 4b 0.5/1.5 

Possible 
replacement 
of 4b by 4a at 
specific dates 

2 
0.1 - 
0.2 

2 - - 
Limit: vertical 

accuracy 

Camargue 
2 - 10 0.5 1/3 - 1/5 4b 5/6/10 - 

2 - 10 1 2 4b 5/6/10 - 
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Greece 
Eastern 

Macedonia 
and Thrace 

Vistonis-
Maroneia 

ng (2 - 10) 1 ng (1/3 – 1/5) 4b 5/6/10 - 

Portugal 
Northwest 

coast 

North of 
Aveiro lagoon 
and south of 

Aveiro lagoon 

10 ng (1) 

2 

End of summer 
and winter 

4b 10 

Possible 
replacement 
of 4b by 4a at 
specific dates 

10 ng (1) 

ng (2-4) 

Post-storm 
production 

4b 10 
Cannot be 

guaranteed 

Romania 
All 

coastline 

2 Mai 

Sulina 

10 1 2 4b 10 - 

10 1 

ng (2-4) 

Emergency 
production 

4b 10 
Cannot be 

guaranteed 

Sulina 10 ng (1) 
12 

Monthly 
- - 

Limit: 
production 
frequency  

 

Images from SPOT1-4 and Landsat 7/8 sensors will also be used in combination with algorithm 4b to address long-term 

changes of the bottom elevation in shallow water areas. This will be conducted at least at the following POC sites: 

Biscarrosse, Bay of Saint Raphaël, Camargue and Vistonis-Maroneia.  

 

4.12 Underwater seabed type (sandy/rocky/vegetated) 
Three different classification approaches (5a, 5b and 5c) have been identified by the consortium members to address the 

end-user needs for classification. Since seabed mapping implies a water penetrating signal, the approach 5b which relies 

on SAR data is not considered here. Usually, the interest in seabed maps has been expressed by end-users that are also 

interested by bathymetry.  

During end-users interviews, requirements for the indicator “Underwater seabed type” were collected. These are listed in 

Table 4-12 per POC sites. In terms of horizontal accuracies, VHR sensors have to be targeted for most of the French sites 

(mainly Pléiades and/or SPOT6/7 satellites), whereas for the Northwest coast of Portugal and eventually Camargue can be 

mapped with coarser sensors such as Sentinel-2. Since no information has been provided in terms of updating frequency, 

the same production frequency and seasons of interest as bathymetry are assumed to be expected. The same limits as 

pointed out in the bathymetry section apply therefore also for this product. However, a frequency of 1 to 5 maps per year 

seems reasonable for all sites, with the exception of Bidart central beach and Erretegia cliff where frequent episodes of 

high turbidity levels have been observed. 

The expected classes to be mapped are very similar among the POC sites and mainly focus on the differentiation between 

sandy and rocky bottoms. In the French PACA region, an additional interest has been expressed to detect posidonia 

seagrass as well as dead seagrass fields. The potential detection of such seabed types depends on water depth and bottom 

albedo. Since sandy bottoms are highly reflective, they can be distinguished through the water column until up to 

approximately 10 m. Rocky and algal bottoms are less reflective and can only be expected to be properly detected at lower 

depth (up to ~5 m).   

The identified classification algorithms 5a and 5c can be applied independently of the targeted sensors for each POC sites. 

The use of 5a algorithm requires an expert a priori knowledge of the location of the different bottom types in order to 

create training polygons to feed the classification model. Also, in situ inventories with geolocation of the observed samples 

can be very useful either to drive the building of the training set or either to validate the produced seabed map. In case of 

5c approach, an in situ measurements dataset containing radiometric spectra of the targeted bottom types can be valuable 

in order to identify which spectral bands to be used and thereby to build the decision tree. If these data are not available, 
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a priori knowledge of the location of the different bottom types may be needed to define the decision rules by trial and 

error. 

 

Table 4-12 - Requirements for indicator " Underwater seabed type " for POC sites where interested end-users have been 
interviewed.  

Country 
Coastal 
region 

POC sites 

Accuracy (m) 
Production 

frequency (yr-1) 

exact dates 

Suggested combination of 
algorithms and EO data 

Horizontal Vertical Algorithm 
Image 
reso. 
(m) 

Comments 

France 

Aquitaine 
Bidart central 

beach and 
Erretegia 

5 - 

3 

Sept./Oct.; Apr.; 
Jul./Agu. 

5a,5c 6/10 

Rocky/Sandy 
bottoms - 

Limited due to 
frequently 

high turbidity 
levels 

PACA 

Bays of 
Hyères, Saint-
Raphaël and 

Nice 

2 - 1/3 - 1/5 5a,5c 2 

Rocky, sandy 
bottoms and 

posidonia 
fields 

2 - 2 5a,5c 2 - 

Camargue 

2 - 10 - 1/3 - 1/5 5a,5c 2/10 
Rocky/Sandy 

bottoms 

2 - 10 - 2 5a,5c 2/10 
Rocky/Sandy 

bottoms 

Portugal 
Northwest 

coast 

North of 

Aveiro Lagoon 

and 

South of 
Aveiro Lagoon 

10 - 

2 

End of summer 
and winter 

5a,5c 10 
Rocky/Sandy 

bottoms 

10 - 

ng (2-4) 

Post-storm 
production 

5a,5c 10 
Rocky/Sandy 

bottoms 

 

4.13 Coastal and intertidal habitat and land cover mapping 
Three algorithms have been described for the detection of coastal and intertidal habitats and land cover mapping 

(algorithm group 5). Two of the algorithms are based on optical data; one is based on a supervised classification (5a), the 

other on a decision tree classification (5c). The third algorithm proposes the classification of texture features base on SAR 

data which can be classified by supervised or machine learning techniques (5b). While 5a and 5b are focusing on coastal 

land cover classification, 5c is dedicated to intertidal flat habitats. A combination or integration of the textural features 

derived from SAR images could be integrated in the supervised classification of optical data for retrieving higher accuracy. 

Classification products were requested by the users for detecting changes in the coastal land use in relation to coastal 

erosion (Portugal), for better protection measures and planning at the coast (Portugal, Greece), for assessment of 

vulnerability of the land affected by coastal erosion (France) and as indicator of habitat changes for intertidal erosion 

(Germany). The requirements for spatial resolution and accuracy range from 0.3m to 10m.  

The requirements expressed by Greece cannot be fulfilled by the available data base and proposed algorithms. Especially 

the requirements for very high resolution of 0.3 m and also the accuracy for 0.3m is too ambitious for the proposed 

approaches products and data available. The requirement for mapping individual species in this resolution will also not be 

possible and for the requested baseline year 1970 no sufficient data expected.  
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The other users require a resolution of 10m which allows the usage of Senitnel-2 data. The requirements of accuracy for 

correct classification (overall accuracy, producer’s accuracy etc.) is not provide by the users. However, the horizontal 

accuracy has been specified with 1 to 10m. The algorithms should be able to fulfil the requested coastal and intertidal 

surface types: urban areas, beaches, dunes, vegetated areas, coastal wetlands, intertidal seagrass meadows, intertidal 

mussel beds, intertidal sediment types.  

 

Table 4-13 - Requirements for indicator "Coastal and intertidal habitat and land cover mapping" for POC sites where 
interested end-users have been interviewed. 

Country 
Coastal 
region 

POC sites 

Accuracy (m) 
Production 
frequency 

(yr-1) 

exact dates 

Suggested combination of 
algorithms and EO data 

Horizontal Vertical Algorithm 

Imag
e 

reso. 
(m) 

Comments 

France Normandy 
Littoral of 
Normandy 

ng - Every 5yrs 
5a, 5b 
(com-

bined?) 
10m 

No information 
about the 
required 

resolution was 
given by the 

user. Sentinel-2 
is proposed 

Greece 
Eastern 

Macedonia 
and Thrace 

Delta of Evros 
River 

0.3m - 

Every 10 yrs 

Baseline: 

1970 

1980, 1990, 

2000, 2010, 

2018 

 

5a 
1-

10m 

The 
requiremnts 

cannot be fully 
met. It should 
be discussed if 

lower 
resolution 

products would 
still be of 
interest 

Germany 
North Sea 

Wadden Sea 

Blauortsand 
10m - 

1/yr 

2011, 2012, 
2013, 2014, 
2015, 2016, 
2017, 2018, 
2019, 2020 

5c 
10m 
(1-

5m) 

VHR with higher 
spatial 

resolution will 
be tested in 

POC 

Nordstrand    

Portugal 
North-west 

coastline 

Municipality 
of Alcobaça 

ng - 

1/yr 

Baseline: 
1990 

5a, 5b (com-
bined?) 

1-
10m 

 

Municipality 
of Ovar 

1m - 1/yr. 
5a, 5b (com-

bined?) 
1-

10m 
 

 

  

5 ALIGNING SPACE FOR SHORE PRODUCTS WITH EUGENIUS ONLINE 
PLATFORM 

The EUGENIUS (EUropean Group of Entreprises for a Network of Information Using Space) infrastructure is based on a 

network of collaborative processing and archiving geospatial platforms. These platforms are based on existing processing 
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facilities, available in Terra Spatium and also within EUGENIUS network partner premises built with Open Source software 

suites coping with OGC standards which guaranty the capabilities of the exchanges into the network (data, information, 

etc.) and allows several users to access data coming from different sources and with different formats online. 

Moreover, end-users have the flexibility to manage or process datasets, create online processing tools (i.e. Web Processing 

Services, etc.), edit/download functionalities and in the end the platform is also a place for creation and delivery of EO 

services. For all the above reasons and taking into consideration the current trends for online fast access/visualization/post 

process and delivery of EO services, EUGENIUS online platform was selected as the most appropriate geospatial tool, not 

only for data exchange among partners but also for the dissemination of “Space for Shore” products to the end-users.  

Hereunder the basic technical specifications in regards, to EUGENIUS platform are being illustrated. An elaborated 

documentation of these specifications, along with the specification needs for products to be in alignment with the platform 

will be further described during “Task 1.3.4: Dissemination of products on EUGENIUS platform”. 

 

Table 5-1 - Acceptable data formats/sources for EUGENIUS online platform, Vector Data source/type. 

Data Formats/Source Description 

Directory of spatial files (shapefiles) Takes a directory of shapefiles and exposes it as a data store 

H2 H2 Embedded Database 

H2 (JNDI) H2 Embedded Database (JNDI) 

PostGIS PostGIS Database 

PostGIS (JNDI) PostGIS Database (JNDI) 

Properties Allows access to Java Property files containing Feature information 

Shapefile ESRI (tm) Shapefiles (*.shp) 

Web Feature Server (NG) Provides access to the Features published a Web Feature Service, 

and the ability to perform transactions on the server (when 

supported / allowed) 

Vector data specs 

• Projection: All registered EPSG’s plus custom projections 

• Size:  No limitation 

• Metadata: INSPIRE compliant metadata/XML 

Other Data Sources 

WMS -> Remote Web Map Service 

 

Table 5-2 - Acceptable data formats/sources for EUGENIUS online platform, Raster Data source/type. 

Data Formats/Source Description 

ArcGrid ARC/INFO ASCII GRID Coverage Format 

GRIB GRIB store plugin 

GeoTIFF Tagged Image File Format with Geographic information 

Gtopo30 Gtopo30 Coverage Format 
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ImageMosaic Image mosaicking plugin (The ImageMosaic data store allows the 

creation of a mosaic from a number of georeferenced rasters) 

NetCDF NetCDF store plugin 

WorldImage A raster file accompanied by a spatial data file 

Raster data specs 

• Projection: All registered EPSG’s plus custom projections 

• Size: Only for .tiff datasets, up to 2gb size 

• Metadata: INSPIRE compliant metadata/XML 

Other Data Sources 

WMS -> Remote Web Map Service 

 

The first level of compatibility check in regards to the alignment of “Space for Shore” products’ format with EUGENIUS 

platform, led to the fact that in most cases -if not in all-, the commonly used formats are tiff-GeoTiff (raster) and shapefiles 

(vector). Nevertheless, a second level of compatibility check will be performed that will take into consideration an 

extensive list of parameters beyond the “typical” file formatting (e.g. coordination systems, file capacity/volume, etc.). In 

any case during this task all possible restrictions in aspect of formats, file sizing, etc. will be tackled in as per 

indicator/algorithm. 
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6 CONCLUSION AND OUTLOOK 
This document provides an overview of all algorithms available for producing indicators and finally the services to the 

users. The mapping of the algorithms to the user requirements provide a good assessment on which algorithms will be 

used for which coastal type and POC test site. It also gives the overall picture of the possible combinations of algorithm 

and EO data type (HR vs VHR) that can be used to address coastal erosion on the short-term (event to annual timescales) 

with a maximal accuracy or on the long term (interannual to decadal scales) usually coming with a poorer accuracy. 

The algorithms differ in their level of maturity and while some are already mature, well validated and applied to many 

different locations, others are on an experimental stage and will be further tested during the POC. For the latter category, 

validation results could only partly be provided, and the algorithms will be further tested during the POC. This document 

will be updated accordingly, providing further input for validation and application range of the single algorithms. This 

should allow us to identify which algorithm performs best for each couple indicator / POC site, if not already done. These 

conclusions could then be extended at a larger scale to other coastal European regions.  

 

 

 

 

− End − 


