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1. SCOPE OF THE DOCUMENT 

This document provides an overview of the algorithms proposed by the Space for Shore consortium to produce the 

main coastal erosion indicators requested by the interviewed end-users (refer to the Requirement Baseline and User 

Requirement Document Book), which usually address short-time scale monitoring. Some of these algorithms are also 

designed to produce the latter indicators over longer timescales with the perspective of demonstrating the potential 

of ESA Earth Observation data archives and other past/currently-growing freely available archives in the study of 

coastal erosion in the past 25 years at European scale. 

The individual algorithms are provided and described by the partners and form the algorithm candidates for the 

different indicators. A maturity status of the algorithms is given. The document provides further a mapping of 

algorithms to end-user requirements. Along with these analysis, proposals of algorithms to be used for the different 

products and pilot sites are then made. The document has been updated with results during the POC, in particular the 

sections describing the accuracy and maturity of the algorithm as well as the discussions on the relevance of the 

algorithms to the end-user requirements. 

The current version of the Technical Specification Document highlights all algorithms used during the second phase of 

the project (Table 2-2). In the annex, we present a list of algorithms that were used in phase one and are not exploited 

anymore (5. Annex). 

2. INTRODUCTION 

Based on the end-user requirements, a grouping of coastal erosion indicators and their level of priority were provided 

in the Requirement Baseline document. Overall, 22 end-users had been interviewed within the public sector including 

national governmental agencies, regional authorities, intermunicipal cooperation and municipalities, as well as natural 

site managers, research centers and coastal observatories. From this panel of potential users of Space for Shore 

services, more than 40 products were requested to support current and future practices to manage issues related to 

coastal erosion. To help synthetize end-user requirements these products were grouped in 5 product families. This 

task enabled to fully characterize the end-user needs in terms of product accuracy as well as the update and delivery 

frequency. It also evidenced that some products were systematically requested by end-users of different regions of 

interest, while others were mentioned only by one or two end-users.  

The algorithms that are described in this Technical Specification document are organized in five algorithm groups. 

These groups were built to ease the presentation of the algorithms, as many of these aim at producing similar outputs 

and/or apply with similar environmental constrains. Each algorithm group is introduced by an introductory and a state-

of-the-art section followed by the description of the main features of algorithms (input data, algorithm type / 

processing chain, output products and tools needed). In addition, information about validation and application range 

is given for each algorithm. This also includes the information on whether an algorithm is mature enough or shall be 

tested. All these descriptions are provided in Chapter 3.  

 

Table 2-1 - Summary of the main products requested (denoted by yellow colour cells) by interviewed end-users to 
monitor erosion along European coasts, which covers a wide range of geomorphological and environmental conditions. 
Extracted and adapted from the Requirement Baseline.  

Family name  Product name  

Regions of interest  

FR  

AQ
  

FR  

NO
R  

FR  

PACA  

GE
R  

WS
  

GE
R  

BS  

PT  

NW
C  

GR  

EM
T  

GR
  

PE
L  

RO  

  

Shoreline  

Cliff foot                   

Cliff apex                    

Dune foot                   
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Waterline (sea/land 
interface)  

                  

Middle of swash zone                  

  

  

Maximum swash (or run-
up) excursion during 

major storms  
                  

Coastal morphological 
patterns 

Sandbar location                    

Beach width                 

Tidal creeks: number, 
length, form, form and 
number of tidal creek 

endings  

                  

Erosion at tidal creek 
edges  

                  

Coastal DEM  

Bathymetry  

                  

Seabed, foreshore and 
land cover mapping  

Underwater seabed type 
(sandy/rocky/vegetated)

  
                  

Intertidal / foreshore 
type 

(sandy/rocky/shingle/…)  
                 

Coastal habitat and land 
cover mapping (several 

levels)  
                 

 

 

 

Table 2-2 - Overview of algorithm groups and algorithms, their maturity level and responsible partner. The last column 
indicates for which indicators the respective algorithm is relevant. 

Algorithm Group Algorithm  Maturity 
level1 

Partner Suitable for: Product Name  

DEMS 
 

Algorithm 1a 

DSM generation 
from optical data 

3 i-Sea 

Terra Spatium 

Cliff foot  

Cliff apex  

 Algorithm 1b 
DEM generation 
from SAR data 

3 Harris Cliff foot  
Cliff apex  
 

Water Line and 
Creek Edge 
Detection 

Algorithm 2a 
Water line 
detection using 
different methods 

2 I-Sea 
Brockmann 
Consult 
Terra Spatium 
Terra Signa 

Waterline (sea/land interface)  
Upper swash limit 
Beach width 

 Algorithm 2e 
Edge detection 
tidal creeks using 
SAR 

1-2 University of 
Hamburg 

Tidal creeks: number, length, 
form, form and number of tidal 
creek endings  
Erosion at tidal creek edges 

 Algorithm 2f 
Upper swash limit 

3 I-Sea 
Upper swash limit 

 Algorithm 2g 
Water line 
detection using 

1 Harokopio 
University 
 

Waterline (sea/land interface)  
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binary products 
from SAR 
amplitude data 
 

 Algorithm 2j 
Decision tree 
classification based 
on band ratios and 
LSU 

3 Brockmann 
Consult 

From the classification, the 
position of tidal creeks is 
determined. Based on a time 
series of images, the shifting of 
tidal creeks can be visualized 
and thus  

erosion at tidal creek edges is 
detected 

Intertidal habitat mapping 

 Algorithm 2k    In-
land vegetation 
boundary method 
based on NDVI 
index 

1-2 Terra Spatium In land vegetation boundary 

Extraction of 
subaerial 
morphological 
structures and 
changes 
 

Algorithm 3c 
Cliff line extraction 
using the cross-
shore variation of 
the beach/cliff 
slope from DEM 

2 I-Sea Cliff foot 
Cliff apex 

 Algorithm 3d 

Semi-automated 
linear feature 
extraction from 
DEMs 

1 Terra Spatium 

 

Cliff foot 

Cliff apex 

 

 Algorithm 3e 

Beach width 

computation  

3 I-Sea Beach width 

 Algorithm 3h 

Dune foot 

extraction using 

supervised 

classification 

 

2 I-sea Dune foot  

 Algorithm 3i 

Cliff line extraction 

using supervised 

classification 

 

1 I-sea Cliff foot 

Cliff apex 

 

 Algorithm 3j 

Top of the cliff 

movement using 

PS with ERS and 

ENVISAT data 

2 Harokopio 
University of 
Athens 

Cliff Movement  

Bathymetry 
 

Algorithm 4b  
Quasi-analytical 
model to retrieve 
bathymetry from 

3 I-Sea Bathymetry 
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HR/VHR optical 
data 

 Algorithm 4c 
Bathymetry swell 
inversion (i-Fourier 
Fast Transform) 

2 University of 
Aveiro 

Bathymetry 

Algorithm 4c 
Bathymetry swell 
inversion 
(ii-Wavelet 
Transform) 

1 University of 
Aveiro 
 

Bathymetry 
 

Extraction of 
submerged 
morphological 
structures and 
changes 
 

Algorithm 6a 
Submerged sand 
banks 

3 Terra Signa 
I-Sea 

Sandbar location  
Submerged sandbar migration 
 

 Algorithm 6b 
Mapping change of 
sandbars 

1 Brockmann 
Consult 

Submerged Sandbar / sand ridge 
location and changes 

1 Maturity levels: 

1 = innovative or experimental algorithm (not tested yet, want to test ideas in POC sties) 

2 = Demonstration algorithm: tested on selected test sites in selected images 

3 = mature algorithm – well tested, applied and published algorithm 
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3. DETAILED ALGORITHM DESCRIPTION 

3.1 ALGORITHM GROUP 1: GENERATION OF DEMS 

3.1.1 Introduction 

Digital Elevation Models (DEMs) are used as input for several coastal erosion products, either directly by exploiting 

the provided 3D information or indirectly though the production of other DEM-derived datasets, i.e. calculation of 

volumes and 3D lines extraction. 

In particular, many different techniques have been developed the past decades for DEM generation, starting from 

conventional ground topographic surveys (e.g. GNSS techniques), to robust photogrammetric methods and 

sophisticated computer vision techniques (e.g. structure-from-motion, etc.); that exploit data acquired from several 

different instruments and sensors. This chapter is focusing on the description of present state-of-the-art DEM 

generation algorithms applied on satellite, optical and SAR, high (HR) and very high-resolution (VHR) imagery. 

3.1.2 State-of-the-art 

Optical Imagery 

In the case of optical satellite data -both for HR and VHR-, the existing state-of-the-art algorithms are covering the 

hereunder processing steps: 

1. Image Pre-processing: In order to improve the radiometric quality and optimize the images for subsequent 

processing steps, a series of filters are usually applied on the datasets. The most common pre-processing 

processes encompass noise reduction, contrast and edge enhancement. Noise reduction filters aim at 

reducing noise, while sharpening edges and preserving corners and one pixel-wide lines (Baltsavias et al., 

2001). 

2. Image Orientation: In order to achieve the image orientation, a bundle adjustment with the supplied Rational 

Polynomial Coefficients (RPCs) model is usually deployed. RPCs provide a compact representation of a 

ground-to-image geometry, allowing photogrammetric processing without requiring a physical camera 

model. A set of images (with stereo or tri-stereo overlapping) is given to determine the set of polynomial 

coefficients in the RPCs model to minimize the error. Therefore, RPCs model is a generalized sensor model, 

which can achieve high approximation accuracy, while Least Square Method (LSM) is usually used to 

determine the optimal parameter solution of the rational function model. Indeed, the use of Ground Control 

Points (GCPs) during this computation is providing the best possible accuracy which according to literature 

review could be sub-pixel (Eisenbeiss et al., 2004). 

3. DEM Generation Method: Several different matching algorithms are used for DEM generation, starting from 

the early ones like correlation-based methods (i.e. 2D correlation, 3D correlation) to most advanced ones’, 

like i.e. 3D Least Square Matching, Global and Semi-Global Matching, to more sophisticated computer vision-

based algorithms, like Feature Based Matching, Structure-from-motion. In most methods the pyramid image 

matching scheme is used. In general, a pyramid image matching method stores matching results in low 

resolution matching and uses these results as initial points for higher resolution matching. 

As stated previously, it is both possible to use pairs of satellite images (i) acquired simultaneously along the satellite 

path (“mono-date” the satellite looking first frontward and then backward) or (ii) at several consecutive dates (“multi-

date”). The later has been recently tested on Norman coastal cliffs using a dataset of Pleiades satellite images (Letortu 

et al., 2020). Several aspects of viewing geometry (incidence angle) in relation with coastal geomorphology (e.g. height 

and slope of coastal cliffs, shoreline orientation) have to be considered preliminarily. For instance, DEM generation 

using mono-date stereo images over very high and abrupt coastal cliffs (like in Normandy) appeared not to be 

appropriate, i.e. when the satellite is looking backward, only the top and plateau of the cliff being imaged, not the cliff 

face nor the cliff foot. In addition, sun position at the time of image acquisition associated with shoreline orientation 

may also be considered, due to shadow effects that may occur on cliff face and cliff foot. The same effect can be seen 
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in sand beach areas (Almeida et al., 2019), where a DEM generated from a Pleiades stereo product can achieve very 

high vertical accuracy (under 0.5m) but this accuracy decreases in dune faces where shadows are produced. 

 

SAR Imagery Algorithms 

To generate DEM data from a couple of SAR images two choices are available: (i) interferometry and (ii) 

radargrammetry. 

Stereoscopy for SAR data is known as radargrammetry. This technique is similar to optical/photogrammetry, but it 

uses a couple of SAR amplitude images to match homologous points and produce height (Capaldo et al., 2014). 

Radargrammetry produces DEMs with a vertical accuracy of a few meters (worse than interferometry) but is very 

robust to atmospherical conditions. 

Interferometry is a technique that benefits from SAR phase information. In a pair of SAR images, the same object 

generates a signal with a change in phase that is related to a shift in the distance viewer-object. With the appropriate 

processing this change can be mapped to a height (Small et al., 1996). This technique has been already used in coastal 

areas (Hong et al., 2006) (Choi et al., 2007), achieving a vertical accuracy close to 1 meter. Anyway, it is a very sensitive 

technique that could be affected by different factors as atmosphere conditions, loss of coherence (due to changes on 

surface conditions). 

Interferometry is a technique that cannot be used always. Phase information is very sensitive to changes, and 

variations in a surface can completely destroy phase coherence making DEM extraction impossible. This is the case in 

vegetation areas, where coherence falls due to continuous “growing” of the observed object. In these cases, a 

combination of interferometry and radargrammetry can be used. This approach has been already tested on coastal 

areas (Yu, 2011) (Nikolakopoulos et al., 2015). 

Simultaneous data acquisition using a pair of satellites flying closely in formation is the challenge unravelled by DLR 

with the twin SAR interferometry TerraSAR-X / TanDEM-X mission. The mission provides digital elevation data at 12-

m full resolution and with an absolute vertical accuracy of 1 m. Airbus DS and CSTARS has recently launched the 

commercial “WorldDEM Ocean Shoreline” product based on TanDEM-X which is supposed to provide an up-to-date 

reference for coastal issues at global scale (applications in glaciology, see Milillo et al., 2019 ). 

3.1.3 Algorithm 1a - DEM generation from optical data 

3.1.3.1 Algorithm description  

• Input data 

According to the software used, different sets of optical satellite images can be used for DEM production, including: 

• VHR (or HR) optical imagery acquired in stereo or tri-stereo mod, e.g. Pleiades (or SPOT5) 

• pair of non-georeferenced VHR (or HR) optical images acquired at subsequent dates with a temporal spacing 

relatively small with respect to the characteristic temporal scales of the coastal change studied.  

Ground Control Points. 

• Algorithms 

We propose two algorithms for DEM extraction from optical data. 

1. The first one is the algorithm proposed by Li and Gruen (Li Z., Gruen A., 2004). This algorithm performs these 

steps: 

• Image pre-processing: edge-preserving filtering and Wallis filtering are applied to images in order to 

reduce radiometric artefacts (very dark and bright areas) and enhance texture patterns in regular areas. 

• A pyramid of images is generated reducing image scale at each level, then starting from lowest 

resolution we apply these steps at each level in a cascade: 

o Feature point matching: feature points generated using Foerstner interest operator and 

matching done by a geometrically constrained cross-correlation method (Gruen, Zhang, 2003). 

Edge-matching: edges generated by the Canny operator are matched using a shape matching 

method. 
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o Grid point matching: a regular grid of points is matched using a global image matching method 

with a relaxation technique (Gruen, Zhang, 2003). 

• A final refined matching based on the modified MPGC (Gruen, 1985) is performed in order to achieve 

accuracy in the subpixel range. 

2. The second algorithm, performs the following steps: 

• Image Orientation: A bundle adjustment with RPCs model and with the use of GCPs during this 

computation is be performed. 

• DEM generation method: It is based in the use of two families of matching methods: 

o Feature Based Matching (FMB): FBM is a matching strategy that is very robust. It only needs 

coarse approximations and is very fast. It has an accuracy of about 1/3 of a pixel. The matching 

process computes interest values in two images of a matching pair that describe the 

appearances of features. The matching process determines common features in the pair by 

means of the computed interest values. 

o Least Squares Matching (LSM): LSM is a matching strategy that is very accurate, but better 

approximations are required, and it is considered rather slow in comparison to FBM. It is mostly 

used to refine points obtained from FBM. The accuracy is about 1/10 pixel. The matching 

process uses a mask created from one image and a template from the second image at a 

previously matched point. The mask is shifted on the template until the sum of squares of the 

gradients is minimized. 

• Tools 

ENVI + OPTICALscape (implementing first algorithm) 

ArcGIS-ESRI, QGIS, DTMaster stereo, INPHO Photogrammetric Suite by Trimble (implementing second algorithm) 

• Output product 

• Raster file output: “*.geotiff” 

 

 

Figure 3-3 - DEM produced from Very High-Resolution optical stereo satellite imagery (Pleiades, Terra Spatium, 
©2016) 

• Vector file output: Point cloud file “*.las” 
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Figure 3-4 - DEM - Point cloud produced from Very High-Resolution optical stereo satellite imagery over cliff area 
(Pleiades, Terra Spatium, ©2016). 

3.1.3.2 Validation  

The deployed algorithms have several times been validated during commercial and research projects executed by 

Terra Spatium, for areas all over Greece. The algorithms have been tested both in coastal, as well as in-land and 

mountainous areas, covering all types of morphologies. In these projects, VHR optical satellite data were used to 

produce DEMs, in particular stereo Pleiades and Geoeye-1 imagery, while computations were performed with the use 

of Ground Control Points (GCPs). GCPs were collected during in situ GPS survey (Real Time Kinematic, L1/L2 

frequencies) with a mean horizontal accuracy 2-3 cm. On the same time a set of independent points were collected 

the so-called Check Points (CPs) and used for validation of the produced DEMs. Usually a set of CPs, evenly distributed 

along the AOI were chosen, trying to cover the specificities of each region, for every stereo-pair at least 7-8 CPs were 

collected. At the end of the day, a relative horizontal accuracy of 1 meter and a relative vertical accuracy of 2-3 meters, 

was achieved in most cases. 

In the framework of Space for Shore, a validation campaign will be carried out to assess DEMs production in Greece 

based on in situ GPS measurements. This field work will take place in late-September 2019, mid-October and could be 

combined along with the validation activities for 4.2.6.2 (Algorithm 2d – Water Line Detection using binary products 

from SAR amplitude data). 

Reference projects: 

1. BEACHTOUR National R&D project: A synergy for the sustainable development and safety of the Hellenic 

Tourist Beaches for the identification of ‘best practices’ in science-driven beach monitoring, management 

and decision-making. (2013-2016). 

2. ACRITAS National R&D project, Space Technologies for Surveillance and Monitoring of Integrated 

Applications: research, design, develop and validate integrated space-based surveillance and monitoring 

applications through advanced multi-sensor data fusion technologies. (2013-2016) 

3. Commercial project (National Cadastre & Mapping Agency) Production of VHR ortho-photomaps and DEM 

along the coastline of Greece. (2007-2009) 

3.1.3.3 Application range and Maturity 

The maturity of the deployed algorithms is considered high, while in order to achieve a high accuracy, Ground Control 

Points (GCPs) are needed for the computation of the aerial triangulation. The GCPs could be acquired, either directly, 

through in situ GPS measurements (L1/L2) or indirectly, extracted from pre-existing orthophoto maps of a similar 

accuracy. Of course, when direct GCPs measurements are being used a better accuracy is achieved at the end of the 

day, i.e. with measurements deriving from a robust computation with GPS equipment using L1/L2 frequencies. In cases 
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that VHR satellite optical imagery (e.g. Pleiades) is used along with GCPs (measured on the ground) the relative vertical 

accuracy achieved is around 2-3 meters. 

3.1.4 Algorithm 1b - DEM Generation from SAR data 

3.1.4.1 Algorithm Description  

Coastal areas are difficult sites to extract DEM information from SAR data, as they are characterised by low SAR 

coherence due mainly to the presence of dynamic water bodies and vegetation. This makes unusable the classical 

interferometry approach, which uses a couple of SAR products to produce an interferogram that contains the changes 

of phase between both acquisitions. The phase changes are then mapped to elevation variations. 

In our case we will use a Multitemporal DINSAR (Differential Interferometry SAR) approach, specifically the SBAS (Small 

Baseline Subset) technique (Berardino, Fornaro, Lanari, Sansosti, 2002) which is well suited for these low SAR 

coherence areas. This technique makes use of a set of SAR products taken at different times to generate a set of 

interferograms. The map of these phase changes to terrain displacements creates a set of equations that is inversed 

by using an SVD decomposition. The aim of SBAS is to find terrain displacements, but it generates also a map of terrain 

elevation (obtained from the reference DEM used in the process and the residual topographic phase estimated). 

The steps performed by SBAS are: 

• Co-registration: In order to perform calculations between SAR images, a previous co-registration must be 

done to have all images in the same geometry (Meijering, Unser, 2004).  Shift between images is first 

estimated using sensor position and orientation metadata, then a cross-correlation approach is used for fine-

shifting. 

• Interferogram generation: Once co-registered, SLC (Single-Look Complex) data are used to compute an 

interferogram, which is obtained by multiplying the one complex image by the conjugate of the other one. 

The interferogram provides an image of phase changes that are due to different effects (Monti Guarnieri, 

Guccione, Pasquali, Desnos, 2003). 

• Interferogram flattening: Interferogram is “flattened” to remove the constant phase effect produced by 

acquisition geometry and the topographic phase effect produced by terrain slope. In order to flatten the 

interferogram, a low-resolution DEM (as SRTM) is used to estimate terrain slope. 

• Adaptive filtering: Once flattened, an adaptive filtering is applied to reduce noise and coherence image is 

generated (Baran, Stewart, Kampes, Perski, Lilly, 2003). Coherence is a parameter that measures correlation 

between acquisitions. Only areas with a high coherence value can be used in DEM computation. 

• Phase Unwrapping: At that point the phase information, which is cyclical, should be unwrapped to provide 

a linear change. This unwrapping is done using a minimum cost flow method (Reigber, Moreira, 1997). 

• Re-flattening: This step is performed using ground control points to estimate and remove phase component 

due to residual topography.  

• Inversion: SVD inversion is applied to get an estimation of terrain displacements and terrain elevation. 

• Inversion post-processing: atmospheric effects are filtered from products. 

• Geocoding: products are transformed from SAR geometry to a cartographic projection. 
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Figure 1-5 - Block diagram of the SBAS algorithm 

• Input data 

Set of SAR SLC data captured on interferometric conditions 

• Algorithms 

• Co-registration 

• Interferogram generation 

• Filtering and coherence estimation 

• Phase unwrapping 

• Re-flattening 

• SVD inversion 

• Atmospheric effects filtering 

• Geocoding 

• Tools 

SARscape 

• Output product 

• DEM in raster (TIFF) format 

• Terrain displacement velocity in raster (TIFF) format 

3.1.4.2 Validation  

The described algorithm has been implemented in SARscape software for several years, and it has been used in 

different commercial projects successfully. Multiple references about algorithm validity and accuracy can be found 

(Necula et al., 2017; Vassilevaa et al.,2017; Singh et al., 2005; Yamane et al., 2008; Deo et al., 2014; Pandit et al., 2014). 

From this last one, we extracted a plot to show the accuracy obtained by the algorithm in a mountainous area (Indian 

Himalayas) using TanDEM-X data, with an RMSE of 8.2 meters (Figure 3-6). 
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Figure 3-6 - Elevation values obtained through DGPS and TanDEM-X DEM for Gangori glacier (0 to 5 – Ground 
observation points) 

 

3.1.4.3 Application range and Maturity 

The algorithm is mature, as it has been used and tested for years. In general, it can be used to generate DEM in any 

kind of terrain, but high slope and vegetation areas use to reduce SAR signal’s coherence and decrease 

interferometry’s accuracy. 
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3.2 ALGORITHM GROUP 2: WATERLINE AND CREEK EDGE DETECTION 

3.2.1 Introduction   

Water lines are a key indicator for almost all coastal types. It is relevant for beaches as well as for the morphological 

assessment of intertidal flat dynamics. Therefore, we present here a number of different approaches and may select 

different ones for the different coastal types. The water line indicator is easily retrievable from both optical and SAR 

data, since the water surfaces exhibit radiometric signatures typical and different from other components of the 

coastal environment.   

Although simple to extract, the water line is dependent on the tidal stage and swell conditions. Therefore, to infer 

relevant shoreline positions from the water line, it is necessary to define a cautious strategy for image acquisition. It 

is recommended to use high-tide or low-tide images only during calm weather conditions. Composite images based 

on time-series can also be used to minimize the impact of waves and tide. Indeed, in microtidal regions, the impact of 

tide level has a fairly low incidence on the water line location. If the water line is extracted from Sentinel-2 imagery 

the impact is probably marginal. However, it should be considered when using very high-resolution data.  

These strategies must be considered whatever the extraction methods detailed hereafter.  

Indeed, the waterline is a good proxy to identify the middle of the swash zone. In the Requirement Baseline, the middle 

of the swash zone is only required in microtidal regions, where this indicator is expected to be efficiently retrieved 

from an image time-series or from image composites as described below (algorithm 2a). 

3.2.2 State-of-the-art  

There are several techniques for delineating shorelines for change assessment, however, most studies use 

photogrammetry/satellite data and spatial analysis techniques (Evadzi et al., 2017; Appeaning Addo, Walkden, and 

Mills, 2008; Jayson-Quashigah, Appeaning Addo, and Kufogbe, 2013; Vos et al., 2019). Other techniques and data 

types utilized for quantifying beach erosion/shoreline changes includes storm-induced beach change model (Wise, 

Smith, and Larson, 1996), Bruun Rule (Bruun, 1962), Hallermeier equation (Hallermeier, 1981), shoreline evolution 

model (Patterson, 2009; Robinet et al., 2018), and shoreline response model (Huxley, 2009).  Although these 

alternative methodologies to satellite/photogrammetry also make use of observations, apart from the reliability of 

each of the method itself, the suitability of the method also depends on the availability, spatial extent, and timescale 

of data.   

Except for photogrammetry, which records historical coastal changes, the other methods are based on a combination 

of models and data, which are more useful when trying to estimate hazard extent where there is limited historical 

information.    

Although shoreline/coastline definition over the years been debated because of the dynamic nature of coasts (Alves, 

2007; Bird, 1985; Boak and Turner, 2005), the shoreline definition referred to as the ‘‘wet–dry’’ line, also referred to 

as the high water line, along the coast has been the most widely used definition for shoreline mapping because it can 

be identified both on images and physically in the field (Crowell, Leatherman, and Buckley, 1991; Dellepiane, De 

Laurentiis, and Giordano, 2004).   

Several remote sensing researchers have worked on the topic of coastline extraction, firstly using SAR amplitude (Lee, 

1990; Descombes et al., 1996; Niedermeier et al., 2000; Baghdadi et al., 2004) and then exploring capabilities of InSAR 

coherence analysis techniques (e.g. Schwabisch et al., 2006; Dellepiane et al., 2004; Wendleder et al., 2013). Albeit of 

the theoretically large backscattering difference in between land (bright) and water (dark), they collectively found 

noise effects (the water surface being frequently wind-affected, and effect of shallow waters) to be quite disturbing 

for automatic waterline extraction, thus exploring several approaches and filtering techniques to improve their 

differentiation. Another option to improve the discrimination water-land would be the use of polarimetric SAR (Wu et 
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al., 2018). SAR images with HH polarization seem to be the most appropriate to discriminate coastline. Full polarized 

data can also be used to perform a polarimetric decomposition that will provide information about the degree of 

volume scattering, surface scattering and double bounce found on the terrain allowing a land-water classification 

(Gurreonero Robinson et al., 2013). Other discrimination measures derived from full polarimetric data have been 

proposed, as correlation between cross-polarization and co-polarization images, to improve separability land-water 

(Nunziata et al., 2016). The recently published  paper by Schmitt et al. 2019 addresses the SAR state-of-the-art. 

Recently, the authors experimented an original TanDEM-X InSAR mono-static data mode “in pursuit” (both satellites 

flying with a larger spatial baseline and  temporal baseline of 10 s) for land-water segmentation with the objective of 

obtaining denoised information and a better discrimination of both amplitude and coherence images. One dedicated 

case for water line detection is the application in intertidal flats to identify the dry-fallen flat surfaces and separate 

them from tidal creeks. Investigations in intertidal flat areas are based on both – optical and SAR data. Differentiation 

between water areas and dry-fallen intertidal flats is done by band ratios and linear spectral unmixing for the German 

Wadden Sea (Brockmann & Stelzer, 2008). The application of SAR data for the same question has been conducted by 

Gade & Melchionna 2016 and also the combination of both techniques, e.g. van der Wal 2005. 

3.2.3 Algorithm 2ai - Water line detection using band ratios 

3.2.3.1 Algorithm Description  

Evadzi et al. 2017, Appeaning Addo, Walkden, and Mills, 2008 and several coastal researchers argue that not only does 

band combination of satellite images provides the best atmospheric penetration and helps visualize Coastlines and 

shores but also by the application of band ratios helps to delineate shorelines along with the Wet-Dry line definition.  

Evadzi et al., 2017 extracted historical shorelines for change assessment in Ghana, by performing Landsat data 

resolution standardization, histogram threshold and automatic shoreline extraction using ENVI classic software to 

separate the land and water based on band ratios (b2/b5 for Landsat 5 data).   

The proposed algorithm is focused on band ratio and histogram threshold. This is applied to Sentinel-2 and Landsat-8 

data; the later used for validation of the algorithm. The Sentinel-2 data is resampled to 10m whereas the Landsat-8 

data is resampled to 15 m after conversion of the data’s at-sensor radiance to at-sensor reflectance values.  

Shorelines generated from Landsat data will not be at the exact location compared to those generated from sentinel-

2 products mainly because of spatial resolution differences. However, the shorelines generated from both sources 

(based on the same expression) must represent the exact wet-dry lines that can be observed on the respective images 

as well as on the field.   

Because of this capability, long term change detection can be computed using several data sources if the uncertainties 

such as positional/tidal changes accuracy, digitization uncertainty (e.g. if derived from orthophotos), as well as image 

resolution uncertainties, can be measured and applied as weights to the shorelines before the computation of change 

rates (Evadzi et al., 2017). 

• Input data 

Sentinel-2 and Landsat-8 products were used for the delineation of the shoreline based on the water-line definition 

and band ratio approach explained above. 

• Algorithms 

• Conversion of Landsat-8 product’s at-sensor radiance values to at-sensor reflectance values.  

• Resample Sentinel-2 product to 10m and Landsat-8 to 15 m.  

• Compute the Wet-Dry Line from Sentinel-2 using the bands math (b8/b2), and the corresponding 

bands (band5/band2) to compute the shoreline for the Landsat-8 product.  

• Threshold for shoreline (1 >= Wet-Dry Line >= 0.9). This threshold is identified to be a good 

threshold for delineation of the shoreline as it does not only delineate the wet-dry line (Figure 

3-7) but also minimizes the selection of mixed pixels that do not reflect the wet-dry shoreline 

(Figure 3-8); '0.5 <= shoreline (more mixed pixels) <= 0.9').  

• Preform Arithmetic Mean 3x3' to smoothing the shoreline.    



Space for Shore – Technical Specification v.3.0 

18 
 

 

• Polygonization of the mask to generate vector data. 

• Tools 

SN SNAP, QGIS, ArcGIS, DSAS 

• Output product 

Figure 3-8 shows shoreline extracted from sentinel-2 images after the water-line definition and band ratio approach 

explained above. 

 

 

Figure 3-7 - Automatic shoreline delineation from Sentinel-2 Image (data ref. date: 08-04-2019). 

 

Figure 3-8 - The impact of thresholds on shoreline delineation from Sentinel-2 Image (data ref. date: 25-04-2019). 
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3.2.3.2 Validation 

The application of the algorithm (with the same threshold) works well for the generation of the wet-dry shoreline on 

both Sentinel-2 and Landsat-8 products. This is also expected to work for other satellite products that have similar 

corresponding bands. Figure 3-9 shows the delineated shoreline from Landsat-8 plotted on Sentinel-2 RGB image 

and shoreline for the same period. Although the Landsat-8 shoreline aligns with the Sentinel-2 shoreline at some 

places, there are slight shifts at some areas. This is expected mainly as a result of product resolution differences. If 

different products are to be used for historical rate of change computation, it is therefore important that the 

uncertainties must be accounted for and applied as weights to the respective shorelines. 

 

 

Figure 3-9 - Different shorelines extracted from 2 sentinel and Landsat8 products (18/19-04-2019). 

3.2.3.3 Application range and Maturity 

Coastal areas are very dynamic and are affected by climatic, geological, changes in the supply of sand to the coast, 

and anthropogenic factors. Extreme events to seasonal changes including cloud and foreign objects over the shoreline 

can significantly influence the delineated shoreline. Figure 3-10 shows the likely impact of the aforementioned 

factors on the shoreline delineation at the shores of Kiel. Several publications reported a similar challenge for the 

delineation of the wet-dry line for deltaic regions because of how dynamic these regions are. Care must be taken when 

selecting a shoreline to generalize for a month. 
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Figure 3-10 - Different shorelines extracted from 2 sentinel images for 04-2019. 

3.2.4 Algorithm 2aii - Water line detection using NDWI  

3.2.4.1 Algorithm Description 

• Input Data 

The approach has been tested and validated for High Resolution optical data such as Landsat-8 and Sentinel-2 data, 

as well as Very HighResolution optical data such as Pleiades and SPOT-7. 

• Algorithms 

The water index and threshold-based water body mapping approaches have been developing ever since 1996, when 

McFeeters 1996 proposed the normalized difference water index (NDWI2), as a result of the following calculation 

between green and near-infrared (NIR) bands: 

NDWI2 = (Bgreen − BNir)/(Bgreen + BNir) 

Water bodies have positive values and non-water body features have negative values, while the index fails to suppress 

built-up structures signals efficiently. That was the case deriving from the 1st project phase results in the French and 

Greek test sites where this index was tested with the use of HR and VHR optical imagery. In particular, the algorithm 

has shown limited performance in defence structures and rocky areas in general, where the predicted waterline was 

not as accurate as on sandy locations and the extracted features were a mixture of water and built-up land noises. 

In order to counter strike this algorithm limitation the modified normalized difference water index (mNDWI) was 

tested, particularly on areas with built-up structures, for to be deployed on 2nd project phase. According to the 

literature, mNDWI has introduced in 2006 by Xu for Landsat data, and made a change by replacing the NIR band with 

the shortwave-infrared (SWIR) band, which helped to remove the disturbances from built-up lands (Xu, 2006). 

Meantime several other indicator configurations have also been tested for the 2nd project phase, that in literature 

are promising better results over man-made coastal structures (Zhou, 2017). In particular the following indexes have 

been tested: 
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• NDVI = (BNir − Bred)/(BNir + Bred) 

• NDWI plus VI = 2.5 × (BNir − Bred)/(BNir + 6.0 × Bred − 7.5 × Bblue +1) 

• NDPI = (BSWIR - Bgreen)/(BSWIR + Bgreen) 

• WRI = (Bgreen + Bred)/(BNIR + BMIR) 

• NDTI = (Bred - Bgreen)/(Bred + Bgreen) 

Nevertheless, the results coming from all these error and trial tests proved that for the optical HR and VHR used the 

mNDWI is performing best over manmade structures. And since the results of NDWI for sandy areas were highly 

accurate we consider that this index will not be abandoned but a combination of indices can provide the best possible 

solution to the inaccuracies. 

• Tools 

Image processing tools used are either implemented on most image processing software (ENVI, ERDAS). Alternatively, 

they can also be found in OpenSource libraries. 

• Outputs Products 

Results carried out for shoreline extraction and shoreline change with time is shown in Figure 3-11. Vectors in shape 

format (or kml/kmz) are delivered. 

 

Figure 3-11 - Example of waterlines derived from SPOT-7 data using NDWI and mNDWI index, comparison with  

between predicted and observed waterline. 

3.2.4.2 Validation 

According to Zhou et. al 2017 mNDWI-based algorithm have better performance of water body mapping in complex 

landscapes, while the NDWI had higher sensitivity for water body extraction in pure open surface water body regions, 

for Landsat-8 and Sentinel-2 data. 

A GPS survey, of 45,1 km waterline took place from 30th September to 2nd October 2019, with the use of RTK GPS 

techniques (Real Time Kinematic, L1/L2 frequencies) and therefore by achieving a mean horizontal accuracy of a 2-3 

centimetres for the collected data. These data are used for a soundful validation. 

3.2.4.3 Application Range and Maturity 

This approach with regards to water line extraction and borders between classes is considered as mature, as it has 

been applied on a worldwide basis. It applied to all sandy shorelines, whatever tidal range and wave exposure. 
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3.2.5 Algorithm 2aiii - Water line detection using AWEI (Automated Water Extraction 
Index) 

3.2.5.1 Algorithm Description  

The Automated Water Extraction Index (AWEI) is yet another index-based methodology that can be used for waterline 

detection. The method was proposed and described by Feyisa et. al 2013 and it was further employed and tested by 

different other studies, such as the one of Bishop-Taylor et. al 2019, where multiple sites with different environmental 

characteristics were used in order to assess the accuracy of the method in comparison with other existing techniques 

(such as MNDWI). 

• Input Data  

The algorithm has been tested for Landsat 5, Landsat 8 and Sentinel 2 data. Visible and infrared (NIR and SWIR) 

wavelengths are required in order to compute de index, therefore can be applied to all types of imagery benefiting 

from such wavelengths. 

• Algorithms   

According to the authors, the aim of the AWEI formulation is to maximize separability of water and nonwater pixels 

through band differencing and by applying different coefficients. Two separate equations were proposed by the 

authors (Feyisa et. al, 2014): one that is specifically designed to perform better in situations where shadows are not a 

major problem and a second one, suitable for areas with shadow or other dark surfaces, which can be used in order 

to eliminate shadow pixels and improve water extraction. For the purpose of Space for Shore project, the first version 

will be used. This is defined by the following formula: 

AWEI = 4 x (ρGREEN – ρSWIR1) – 0.25 x ρNIR + 2.75 x ρSWIR2   

where ρGREEN, ρNIR, ρSWIR1 and ρSWIR2 represent reflectance values for different regions of the electromagnetic spectrum. 

The procedure for waterline extraction follows several steps, which are detailed hereafter:   

• Applying atmospheric correction to all the images that will be used; 

• Computing the AWEI index using multispectral satellite imagery (e.g. Sentinel 2, Landsat 5, Landsat 8); 

• Applying the Otsu thresholding method (Otsu, 1979). This method is used to derive the best threshold 

value in order to separate the land pixels from the water pixels; 

• Waterline indicator is derived at subpixel level and then, converted to vector line. 

 

• Tools 

The tools will be implemented by consortium members software and libraries such as GDAL, R and SNAP. 

• Outputs Products 

The output for this algorithm is a vector in shape format that contains the waterline position for a certain date.  

Figure 3-12 presents the waterline position that was extracted from Sentinel 2 images using the AWEI index over 

different moments in time for Sulina – Sfantu Gheorghe site. 
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Figure 3-12 - Example of waterlines derived from Sentinel 2 data using AWEI index over different moments in time 

3.2.5.2 Validation  

 The index accuracy was tested by Bishop-Taylor et. al 2019 for five different environments: sandy beaches, artificial 

shoreline, rocky shoreline, wetland vegetation and tidal mudflat, along the Australian coastline. The authors compared 

the results that were obtain using three different indices (NDWI, MNDWI, AWEI) and three different threshold 

methods. The subpixel waterline derived from AWEI index presented the highest accuracy for all five sample 

environments that were analyzed. Automated index thresholding approaches (e.g., Otsu) can be combined with 

subpixel methods to extract waterlines. The subpixel waterlines extracted from the 30 m resolution data using Otsu 

thresholding had an RMSE of 1.51 - 1.58 m (Bishop-Taylor et. al, 2019). 

The algorithm was also validated for Sulina – Sfantu Gheorghe site. The validation activities consist of comparing the 

distance from in-situ GPS measurements with the waterline derived from MNDWI and AWEI indices. The results 

obtained using Sentinel 2 data showed that the indicator accuracy obtained using AWEI index is higher than the one 

obtained using MNDWI index (Figure 3-13).   

 

 

Figure 3-13 - Distribution of the total number of differences between the in-situ GPS measurements and satellite 

derived waterline using AWEI and MNDWI indices for 2 different moments in time for Sulina – Sfantu Gheorghe site 

 

3.2.5.3 Application Range and Maturity  
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 The results based on this algorithm, as tested by Bishop-Taylor et. al 2019 for five different environments, showed 

that the best accuracy was obtained using the AWEI index for waterline detection on sandy beaches, artificial 

shoreline, rocky shoreline, wetland vegetation and tidal mudflat. This algorithm was proved, by our initial estimations, 

to be highly accurate for Sulina – Sfantu Gheorghe site. It was applied on Landsat 8 and Sentinel 2 data and all the 

validation exercises showing the results will be reported in the following months. 

3.2.6 Algorithm 2aiv - Water line detection using NDWI2 

3.2.6.1 Algorithm Description  

• Input Data  

The approach has been tested and validated for High Resolution optical data such as Sentinel-2 data and Very High 

Resolution such as Pleiades 

• Algorithms  

The upper waterline excursion represents the farthest location of water when it swashes on the beach during a period 

of time. Before getting the upper waterline excursion, waterlines must be computed for a set of close date imageries. 

The waterline detection method is based on Vos et al (2019). The steps are the following:  

1. the image is georeferenced  

2. a composite image is created by stacking a subset of the original bands and some indices (vegetation, water and 

soil) 

3. a classification (random forest classifier) is performed on the image to detect the following classes: water, sand and 

other. To fit the random forest model, a training set has been digitized on a set of images 

4. the NDWI2 index is computed 

5. a threshold between NDWI2 sand pixel and NDWI2 water pixel is determined with the Otsu thresholding method 

6. the marching square algorithm is used on the NDWI2 index with the previously determined threshold. 

• Tools  

python, orfeo toolbox, gdal, qgis. 

• Outputs Products  



Space for Shore – Technical Specification v.3.0 

25 
 

 

 

Figure 3-14 - Set of water lines extracted from Sentinel-2 images with NDWI2 and Otsu thresholding methods 

3.2.6.2 Validation 

The validation step consists in measuring the average distance between a reference line and produced line from 

satellite data. First, the produced line is converted into point with a fixed distance (every 10m). Then the nearest 

distance from the point to the reference is line is computed. Finally, the error of each point is plotted and the average 

error is computed. 

3.2.6.3 Application Range and Maturity  

 This approach with regards to water line extraction and borders between classes is considered as mature, as it has 

been applied on a worldwide basis. It applied to all sandy shorelines, whatever tidal range and wave exposure. 

3.2.7 Algorithm 2e - Edge Detection tidal creeks using SAR  

3.2.7.1 Algorithm Description  

• Input Data 

SAR data (single band) from one specific period, typically one calendar year. 

Used are data from the Copernicus Sentinel-1 missions. The amount of data depends on the general availability 

(number of SAR sensors in orbit) and the effective acquisitions made around low tide in the area of interest.  

• Algorithms  
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The satellites data used to produce indicators for the edges of tidal creeks has been processed using a processing chain 

(2E) with the following steps:  

1.georeferencing 

 2. extraction of the AOI (8.567°-8.867°E 54.117°-54.300°N);  

3. mosaicking of partly covering scenes;  

4. identification of acquisitions made close to low tide;  

5. generation of a data cube;  

6. annual statistical analyses, including mean, standard deviation, minimum/maximum;  

7. moving boxcar filter of size 11x11;  

8. derivation of spatial gradients;  

9. contrast enhancement 

 

• Tools 

All processing steps were performed using ESA's SNAP toolbox. 

  

• Outputs Products 

Annual maps of the Area of Interest with indicators for tidal creek edges. Large indicator values correspond to 

high likelihoods of creek edges, corresponding to strong signals in the SAR imagery. 

3.2.7.2 Validation  

Results (indicators) are being validated in collaboration with the local end user (LLUR, Hans-Christian Reimers). An 

additional validation campaign in the course of a student excursion in May had to be cancelled, because of the travel 

ban 

3.2.7.3 Application Range and Maturity  

The algorithm can be applied to SAR imagery of exposed intertidal flats of similar morphology (sediment composition) 

than in the Area of Interest. The most important constraint is that the data needs to be acquired close to low tide, i.e. 

at sufficiently low water level. An applicability to SAR data of different radar bands (primarily L-band) would have to 

be investigated, though such data is less frequently acquired. Maturity level is 3. 

3.2.8 Algorithm 2f - Upper Swash Limit  

3.2.8.1 Algorithm Description  

• Input Data 

A set of waterlines in vector format. 

• Algorithms 

All the waterlines are combined and the farthest curve from the water is extracted as the upper waterline excursion. 

The manipulation consists in converting all the input features to polygon, merge the resulting features, converting 

back to polyline and extracting the onshore line manually. 

• Tools 

Arcgis 

• Outputs Products 
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Figure 3-15 - Upper swash limit computed from set of water lines 

 

3.2.8.2 Validation  

The validation step consists in measuring the average distance between a reference line and produced line from 

satellite data. First, the produced line is converted into point with a fixed distance (every 10m). Then the nearest 

distance from the point to the reference is line is computed. Finally, the error of each point is plotted and the average 

error is computed. 
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Figure 3-16 - Mean and RMSE computation from distribution of errors measured for each transect 

3.2.8.3 Application Range and Maturity  

This approach with regards to water line extraction and borders between classes is considered as mature, as it has 

been applied on a worldwide basis. It applied to all sandy shorelines, whatever tidal range and wave exposure. 

3.2.9 Algorithm 2g - Waterline Extraction based on interferometric coherence from 
satellite SAR Images  

3.2.9.1 Algorithm Description  

• Input Data 

This algorithm has been tested for ERS1/2, ENVISAT SLC data.   

 

• Algorithms 

This algorithm proposed for the extraction of the coastline is based on the creation of an average coherence between 

the pairs of SAR images of each year. Coherence information is always a powerful discriminant between land and sea 

(Dellepiane et al. 2004). The main idea of the algorithm is to detect the positions of large coherence value gradients 

in the correlation map which should reveal the boundaries between the high coherent land areas and the decorrelated 

water surface (Schwäbisch et al. 2014). 

The first step for the extraction of the coherence image is derived from the correlation of the InSAR couple. In every 

pair, master image is set the first image of the year compared with all other dates. Interferometric coherence is an 
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important indicator of suitability of the data scene obtained by a radar remote sensing system for the further 

processing and solving the final problem, i.e. generation of digital elevation model or terrain changes map. The 

coherence factor is calculated as the absolute value of the correlation coefficient between samples of two complex 

radar images (single-look data complex, SLC) got in the local windows 

 

 

 

where z1(2) (m, n) is the SLC samples (¯z1(2) (m, n) are complex-conjugate samples) [2–5], ˆγ0 takes values in interval 

[0, 1], near-zero values correspond to areas of high or full decorrelation, which are not suitable for interferometric 

data processing (Sosnovsky et al. 2015). In order to reduce the noise, as the post-processing step, we perform 

multilooking and terrain correction. In case of ESA's ERS and Envisat sensors, the factor 5:1 (azimuth:range) or similar 

ratio between the factors is chosen to obtain approximately square pixels (20x20 m^2 for factors 5 and 1). Of course, 

the resolution decreases if multilooking is applied (SNAP). 

  In the second step, a stack of coherence layers is produced in order to calculate the average of each year. At the 

generated layer a filter is applied to reduce the speckle noise of the image (Lee Gamma window size: 13x13 target 

window size: 5x5).After the image is smoothed, an inspect of the histogram is applied on the area of the sea, in order 

to find a good threshold point to separate from the land. By applying the threshold, the image is classified into two 

types (sea–land binarization) for each pixel, and the boundary is extracted as the shoreline (Takashi et al. 2018). The 

produced layer is extracted as geotiff in order for further processing on GIS environment. Final the image is converted 

on vector data. Shoreline is generated by automatic algorithm. 

• Tools 

The tools will be implemented by consortium members software as SNAP, ArcGIS and QGIS. 

• Outputs Products 

The output for this algorithm is a vector in shape format that contains the waterline position for a certain date. 



Space for Shore – Technical Specification v.3.0 

30 
 

 

 

Figure 3-17 - Example of waterlines derived from Sentinel 1 data over different moments in time 

3.2.9.2 Validation  

For the validation will be used data from the land registry of Greece such as orthocorrected images and the digitized 

coastline from different years. 

3.2.9.3 Application Range and Maturity 

Coherence information has already been exploited successfully in landuse applications or for the purpose of 

forest/non-forest-discrimination. Forested areas, similar to water, mainly appear decorrelated in repeat-pass 

interferograms whereas agricultural and urban areas are characterized by medium to high correlation. (Askne et al. 

1993, Wegmüller et al 1996, Schwäbisch et al. 2014). 

3.2.10 Algorithm 2j - Decision tree classification based on band ratios and LSU 

3.2.10.1 Algorithm Description 

The classification of optical data for intertidal habitats and sediment distribution is based on a number of different 

decision trees. Dedicated decision trees are in place that focus on specific aspects of the intertidal flat areas, such as 

seagrass meadows and mussel beds, sediment distribution or the distribution of sediment and water areas, including 

remaining water ponds on the sediment surfaces. These decision trees, which use well defined features derived from 

optical data, will be used to characterize the intertidal habitats and their changes, in particular the morphological 

changes of intertidal creeks.   
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• Input Data 

Each classification is based on a single acquisition of optical high resolution data from sensors onboard of Landsat-5, 

Landsat-8, Sentinel-2, SPOT-5-6-7, RapidEye. In order to detect the morphological characteristics and changes a long 

time series of classifications is required. The longest time series is available for Landsat series, starting with Landsat-5 

MS, Landsat-8 ETM (1999-2003), Landsat-8 since 2013. Data availability is limited due to low tide constraints, but it 

has improved since the launch of Sentinel-2; having both – Landsat-8 OLI and Sentinel-2 MSI in parallel since 2015 and 

even with MSI-B since 2017. Until now, the intertidal flat classifications have been mainly applied to freely available 

data.  

• Algorithms 

A classification framework has been developed together with national park authorities to classify the intertidal flat 

areas of the Wadden Sea. The classification is based on a knowledge-based decision trees using different band 

combinations and linear spectral unmixing abundances (Müller et al., 2016). Examples of different decision trees are 

given in (Figure 3-18). For this specific product, the discrimination between sediment areas and tidal creeks (water) is 

needed. It also provides shallow water areas on the tidal flats (remaining water in depressions). Especially the shift of 

the tidal creeks and sediment flats is needed for assessing erosion processes in the Wadden Sea. Finally, the 

classification results are overlaid in order to visualise the shift of tidal creeks (Figure 3-19) 

 

 

Figure 3-18 - Examples of different decision trees for retrieving intertidal flat habitats and sediment distributions 

• Tools 

SNAP and ENVI 

• Output product 

The output are classification results in raster format (Figure 3-19). They are overlaid for analysing the tidal creek 

changes. The products are used the assessment of erosion in the German Wadden Sea Test Sites (North Sea).  
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Figure 3-19 - Classification of sediment flats and tidal creeks in 2015 (left) and 2016 (right 

As a next step, the land and water classes are used to determine the low-water line for the intertidal flat areas and 

creeks which is then converted to a vector data set. Overlay of different years show the movement of outer tidal flats 

and creeks (Figure 3-20). 

 

Figure 3-20 - Changes of tidal creek positions between 2015 and 2018 

3.2.10.2 Validation 

The classification of intertidal flat habitats, which is the basis of this application, has been validated in terms of 

sediment type and seagrass beds (Müller et al. 2016). However, the transition between water and land has only be 

validated against the original images, as the water level changes too fast due to tidal effects and cannot be evaluated 

in the field.  

3.2.10.3 Application Range and Maturity  
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The method is strongly depending on the tidal phase and weather conditions during the images acquisition. Therefore, 

several images need to be analysed per period in order to get a representative distribution of the tidal creeks. Cloud 

free conditions and low tide are pre-conditions for good images and reduce the availability of suitable images. The 

situation has been improved since the launch of Sentinel-2. 

The outcome, which needs to be applied to a longer time series will be used to observe the direction morphology 

changes and if creeks are approaching coastal areas or if large tidal basins undergo main changes (e.g. connection of 

tidal basins by tidal creek changes or break throughs. The identification of the trend is in focus for assessing the 

influence on coastal erosion.  The more images are included, the better the expected results. As the water level is very 

variable, it needs to be demonstrated that the trend is still detectable. The accuracy of the trend detection will be very 

much influenced by the availability of suitable low tide images. 

3.2.11 Algorithm 2k - In-land vegetation boundary method based on NDVI index 

3.2.11.1 Algorithm Description  

• Input Data 

Data used for this algorithm are Very High-Resolution optical data, in particular Pleiades and SPOT-7 imagery. 

• Algorithms 

The Normalized Difference Vegetation Index (NDVI) was developed in 1985 and represents the plant nitrogen 

assimilation condition and therefore its photosynthetic efficiency. NDVI index is an indicator which is used for the 

density of chlorophyll and leaf tissue and is expressed as following: 

NDVI = (NIR − RED)/(NIR + RED). 

NDVI gives values between −1 and +1, where vegetated areas in general yield high positive values and non-vegetated 

ground is found on the negative side. 

The NDVI Index gives the difference between the healthy and unhealthy vegetation and assists in detecting the healthy 

vegetation boundary in the coastal area zone. According to Johansen et al., 2014 the NDVI values extracted from 

Landsat 7/ETM+ data over the peninsula of Nordenskiöld Land proved successful for coastal vegetation. 

Also, Marzialetti et al. 2019, explored the potential of Sentinel-2 in capturing coastal dune natural vegetation types 
using a phenology-based mapping approach. It appeared that Sentinel-2 images confirmed their high potential for 
vegetation mapping, while the multitemporal analysis of NDVI provided complementary and useful information, 
proving its convenience even in complex vegetation mosaics, over Mediterranean areas. 
 

• Tools 

Image processing tools used are either implemented on most image processing software (ENVI, ERDAS). Alternatively, 
they can also be found in OpenSource libraries. 
 

• Output products 

Results carried out for coastal vegetation in-land boundary extraction is shown in Figure 3-21. Vectors in shape format 
(or kml/kmz) are delivered. 
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Figure 3-21 - Example of vegetation boundaries derived from Pleiades data using NDVI. 

3.2.11.2 Validation  

A GPS survey, of 45,1 km waterline took place from 30th September to 2nd October 2019, with the use of RTK GPS 

techniques (Real Time Kinematic, L1/L2 frequencies) and therefore by achieving a mean horizontal accuracy of a 2-3 

centimetres for the collected data. These data are used for a soundful validation. 

3.2.11.3 Application Range and Maturity  

This approach with regards to vegetation line extraction and borders between classes is considered as mature, as it 

has been applied on a worldwide basis. 
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3.3 ALGORITHM GROUP 3: EXTRACTION OF SUBAERIAL MORPHOLOGICAL 
STRUCTURES AND CHANGES 

3.3.1 Introduction  

This section presents algorithms that are used to compute key indicators useful to assess the morphodynamics of 
different subaerial areas along the sandy and rocky coasts and to mitigate risks related to erosion processes. Attractive 
coastal areas are usually well urbanized with the building of expensive seafront, facilities and houses on top of coastal 
dunes and cliffs. Monitoring the dunes foot and the main cliff lines (foot and apex) is crucial for coastal stakeholders 
to anticipate the impact of erosion that can damage seriously these infrastructures and threaten the safety of coastal 
users. The knowledge of the beach width is also essential for coastal municipalities as it provides an indication on the 
recreational potential and attractiveness of their coastlines. This indicator is therefore often included in beach 
nourishment strategy. Although less widespread in end-user practices, the tracking of unusual and sudden low-
amplitude vertical movements on top of cliff can also indicate a ground instability and warn of a likely and future 
landslide usually associated with dramatic impacts if not anticipated. The study of ground vertical movements on 
longer timescales (> annual timescale) can also reveal the existence of trends of gradual downward settling of the 
ground surface, called subsidence. Within deltaic environments this ground process, which can reach several 
centimetres per year in some places, leads to a continuous coastline retreat and higher exposure to marine flooding. 

3.3.2 State-of-the-art  

Linear features (dunes foot, cliff lines) extraction in coastal areas can be made following different approach. The 
simpler strategy relies on manually digitizing polylines (Hapke and Reid, 2007) from raw images, processed image 
where features are enhanced, DEMs or even combination of DEMs and images. The main advantages of this method 
are that:  

• it can be performed using only basic tools from GIS software 

• the operator digitizing the linear features can identify possible source of error and take a decision based on 
ground-truth knowledge that is sometimes nearly impossible to automate 

• the outputs of the digitizing procedure are directly polylines and no post-processing is required before 
delivery to end-users 

However, this approach includes some limitation. First, the operator requires an accurate knowledge of the study site 
to avoid subjective decision in digitizing (e.g. when the dune foot line starts be blurred due to accretion processes that 
sometimes occur). Second, this approach is really time consuming. While manually digitizing lines for few images is 
rather acceptable with production times expected to be of some hours to days, applying this procedure to a high 
number of dates and sites becomes totally inefficient.  

To overcome these limitations, scientists and companies tend to develop automated tools (e.g. Hoeke et al., 2001; 
Brzank et al., 2005; Zarillo et al., 2008; Liu et al., 2009; Lafon et al., 2010, 2014). However, some manual and site-
specific operations are always necessary because of the high variability in shape and characteristics of coastlines 
worldwide. These manual operations included in these so-called semi-automated algorithms allow calibrating some 
coefficients used at different steps of the algorithm (e.g. kernel size for computing textural parameters, characteristic 
length scale of the dunes and cliffs present in the image or DEM, thresholds on metrics of ground slope or on texture 
or on reflectance).  

To the author knowledge, there is no published references specifically dealing with coastal dune foot line extraction 
from satellite imagery, apart from the work of Lafon et al., 2014 based on texture metrics, and also method based on 
multispectral image classification (Lafon et al., 2010; Roche et al., 2014). The dune foot is usually defined as the abrupt 
increase of slope observed at the transition between the upper beach (landward the berm) and the dune front (Boak 
and Turner et al., 2005; Toure et al., 2019). This cannot be detected directly from a satellite image. However, the 
transition between the beach and dune area is also marked by changes in surface reflectance and texture. Over the 
beach, the image reflectance is usually high and homogeneous while landward the dune face the reflectance can be 
lower and more heterogenous due to presence of vegetation and local shadows that typically appear in dune fields. 
The foredune face can also present a different spectral signature and typology compared to the upper beach. While 
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extraction of a dune foot proxy from texture metrics requires VHR optical image, extraction from results of 
classifications applied to image reflectance signature and band ratios can also rely on HR image.  

Studies focusing on coastal variability and in particular on the dunes system usually uses DEM (generated from DGPS 
or LIDAR topographic surveys or from photogrammetry that uses images taken from UAV, plane or satellite) to 
compute date-to-date changes in dune volume (e.g. Castelle et al., 2015; O’Dea et al., 2019; Laporte-Fauret et al., 
2019). The DEM can also be used to extract the dune foot by using a slope threshold calibrated with ground 
observation (e.g. Nahon et al., 2019) or by using image processing methods for edge detection within raster of 
elevation (e.g. Richter et al., 2013). Analysing the slope variability in the cross-shore direction, with the search of the 
location of the first maximal slope increase from the upper beach, can also allow us detecting the dune foot (e.g. Le 
Mauff et al., 2018). However, except for coastal dunes suffering regular erosion events leading to a clear and sharp 
slope break, the transition between the upper beach and the dune face is sometimes blurred by sand sliding over the 
dune face to the dune base (Battiau-Queney et al., 2003). In that case the dune foot can no longer be represented by 
a line but more by a 2-3-m wide buffer area (Guillén et al., 1999). In case of coastal system undergoing accretion, the 
dune foot can even not be tracked rigorously, even by field works, as several embryo dunes form on the upper beach 
with vegetation usually developing on the top. These two morphodynamic processes represent potential source of 
errors in the detection of the dune foot from DEM, as only regular field works can check their occurrence in time and 
space. No any reference describing and validating methods for coastal dune foot extraction from satellite-image-
derived DEM is found in the literature. Nevertheless, as production of coastal dune DEMs from optical spatial imagery 
using photogrammetry shows promising results (Almeida et al., 2019), the detection of the dune foot from space 
based on elevation and slope data appears feasible.   

Detection of cliff lines in coastal areas can be done in similar ways as for the dune foot detection. Seaward the cliff 
foot is usually found find a gently sloping rocky platforms intermittently covered by sand or shingle deposits. Landward 
the cliff foot starts the cliff face, which is essentially characterised large elevation gradients at least an order of 
magnitude higher than those found elsewhere in the coastal area. A large variety of morphologies along the cliff face 
are observed worldwide due to different lithologies and processes involved in the cliff dynamic. The upper boundary 
of the cliff face, called top, is delimited the strong reduction of the ground slope and the start of more morphologically 
stable areas where vegetation and urbanisation can develop. For cliffs relatively steep shadows are usually projected 
on the cliff face seaward the cliff top due to obstruction of sunlight. This occurs when the earth-projected sun location 
is located landward the cliff top and when the sun elevation is lower than the cliff slope. Similar to the dune foot 
extraction, supervised classifications can be applied to extract the cliff lines based on these specificities. However, the 
success of the classification and the further extraction of cliff lines is essentially site specific and requires to identify 
consistent proxy of these line. Both VHR and HR optical images can be used, although extraction based on HR data will 
allow to detect significant changes within the cliff only if large temporal period are considered (e.g. 10-20 years) or if 
the cliff change rate are high (1-10 m/year), which is rarely the case.  

Several methodologies for cliff line extraction were developed in the last decades relying on LIDAR-derived DEM but 
using different approaches. For instance, Gomes-Pereira and Wicherson, 1999 applied image processing tools 
(mathematical operator) on rasterized DEM (elevation grid) to classify image pixels into ‘slope pixel’ or ‘flat pixel’. 
Then, the cliff lines were assumed to be found at the boundary between the two classes of pixels and were identified 
by checking the 8-point neighbourhood of each pixels. Sui et al. 2002 also used image processing method (edge 
detection with the Canny operator) to a LIDAR-derived DEM transformed into a greyscale image. A more geometrically 
based approach exploiting the entire 3D information provided by the LIDAR measurements was addressed by Briese, 
2004. It consists in fitting planes to the 3D point cloud and identifying intersections between two adjacent planes, 
which locate either the cliff foot line or the cliff top line. With the same idea, Brzank et al., 2005, extended this 
approach by locally fitting a surface described by the hyperbolic tangent function to the cliff DEM. Then, geometrical 
analyses are made on the modelled surface to locate the two maxima in surface curvature (one convex and one 
concave) in cross-shore direction, which corresponds to the cliff foot and top, respectively. These methods however 
may fail with increasing coastal complexity and presence of vertical perturbation in the DEM unrelated to the ground 
elevation such as vegetation and buildings. A different approach was proposed by Liu et al. 2009 who exploited directly 
the elevation data provided by the DEM along a series of adjacent and regularly spaced transects oriented 
perpendicular to the cliff face. They based their approach on the conceptual representation of the cliff mentioned 
above, which is that the variation of the slope along the elevation profile is commonly greater at the top and the base 
of the cliff than anywhere else along the profile. Still using a transect-based approach Palaseanu-Lovejoy et al., 2016 
introduced a new methodology that resolves easily the detection of the cliff foot and top along elevation profiles 
extracted from LIDAR-derived DEM. It even captures the presence of major irregularities along the cliff faces such as 
terrace that could represent a large source of error using previous methodologies.   
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For coastal managers, the beach width (Robertson et al., 2007) usually refers to the cross-shore distance over which 
the beach is most of the time dry and then fully available to welcome recreational activities. For beaches experiencing 
a micro tidal range, the beach width can reasonably be approximated by the cross-shore distance between the upper 
limit of the beach – marked by the dune or cliff foot or the base of defence structures – and the instantaneous 
waterline or the line passing through the middle of the swash zone. For beaches experiencing a larger (macro/mega) 
tidal range, the use of the mean high-water line as the proxy of the seaward boundary of the beach width is more 
appropriate (Burroughs and Tebbens, 2008; Richter et al., 2013, as it would limit the large horizontal fluctuations of 
this boundary that are associated with the daily water level fluctuations.  

Differential SAR interferometry (Massonnet and Rabaute, 1993), allows measurements of land deformation very 
precisely with millimetre resolution. It has various applications in the fields of volcanology, cartography, coastal 
dynamics and land subsidence. By using large stacks of SAR images acquired over the same area, long deformation 
time series can be analysed using multitemporal differential SAR interferometry techniques. These coherent methods 
exploit either permanently coherent Persistent Scatterers (PSs) or temporally coherent Distributed Scatterers (DSs). 
PSs are typically artificial objects that reflect radar energy well such as metal structures and buildings. The PS methods 
that have been developed include the Permanent or Persistent Scatterer Interferometry (PSI). PSI provides a 
parametric estimation of the 3D location and velocity of each PS along the line of sight (LOS) connecting it to the 
satellite (Ferretti et al., 2000; Ferretti et al., 2001). Many such measurements are combined using PSI to produce highly 
accurate terrain motion maps. In urban areas where there is a prevalence of PSs, PSI allows analysis of even individual 
structures on the ground. The DS methods include algorithms such as SBAS. A DS object reflects lower radar energy 
compared to PSs and it usually covers several pixels in high resolution SAR images. These pixels exhibit similar 
scattering properties and can be used together for deformation estimation. SBAS estimates the deformation time 
series even in rural areas where the density of PSs is low (Berardino et al., 2002), such as in low urbanized deltaic 
environments.  

3.3.3 Algorithm 3c - Cliff line extraction using the cross-shore variation of the beach/cliff 
slope 

3.3.3.1 Algorithm Description  

• Input data 

This algorithm relies on the availability of a digital elevation model (DEM) that includes the cliff face and part of the 

subaerial domains seaward and landward the cliff face so as to have the cliff foot and apex within the DEM. The DEM 

can be computed from photogrammetry or stereo-radargrammetry using VHR optical images or from interferometry 

using VHR SAR images (see algorithm group 1 Section 3.1). The proposed algorithm for cliff foot extraction relies on a 

DEMs provided over a regular mesh. 

The proposed algorithm is expected to require some tuning coefficient that surely will depend on the characteristic 

dimensions of the cliff system, such as the average cliff height and slope. 

The proposed algorithm is expected to be able to detect automatically a reference line following locally the overall 

cliff face orientation that is used to define perpendicular transects along which the cliff foot and apex detection will 

be performed. However, if this part of the algorithm lacks robustness, it may be necessary to provide the reference 

line or the transects for each POC site. 

• Algorithms 

The main steps of the algorithm are presented in Figure 3-22 with blue, grey and yellow boxes indicating the main 

inputs, the sub-algorithms to be developed and the algorithm and sub-algorithm outputs, respectively. The overall 

idea is to detect the location of particular changes in slope combined with cliff elevation ranges along regularly-spaced 

transects locally perpendicular to the cliff face. Indeed, landward the sea the beginning of the cliff face is usually 

characterized by a strong increase of the slope at the cliff foot and a strong decrease at the cliff apex. Seaward the 

cliff foot and landward the cliff apex the slope is weak while in between the slope is high while. The first main step of 

the algorithm is to identify a line approximating the cliff face location from which perpendicular, regularly-spaced 

detection transects will be defined. Then, along each of these transect the cross-shore variability of the ground slope 

is analysed. In particular, inflexion points in the slope, which are characterized by the second derivative of the 
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elevation equal to zero, are tracked as they might be the best proxy for transitions between the different coastal 

compartments. Here, only tests one real DEMs will allow robust implementation of this critical part of the algorithm. 

Existing methodologies (e.g. Liu et al., 2009; Brzank et al., 2005) for cliff lines detection will be investigated to support 

the algorithm implementation. 

 

Figure 3-22 - Methodology proposed to extract the cliff lines from DEMs 

• Tools 

Python programming language. 

• Output product 

The outputs from this algorithm are vectors of cliff foot and cliff apex position 

 

Figure 3-23 - Cliff lines extraction from Pleiades images 
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3.3.3.2 Validation  

As for the dune foot line extraction algorithm the maximal horizontal accuracy is expected to be of the order of the 

DEM resolution, with DEM horizontal resolution usually set to the double of the resolution of the original images. 

Thus, for a DEM perfectly well computed using Pleiades images of 0.5-m resolution the horizontal accuracy in dune 

foot detection would be of the order of 1 m. A lower accuracy is however likely as the image georeferencing of the 

images may not be totally perfect and mainly because slope break extraction from discrete elevation data can 

introduce errors. 

3.3.3.3 Application Range and Maturity  

Coastal cliffs within Europe present a great variety of shapes in both the horizontal and vertical directions making 

nearly impossible to have a single automated algorithm applicable to all cliff geometries. Here, the proposed algorithm 

will be developed essentially for cliffs of simple geometry (e.g. relatively straight in top view, low ground slope seaward 

the cliff foot and landward the cliff top, no multiple detachments of the cliff in the cross-shore direction). The proposed 

algorithm also assumes that the cliff foot is always located seaward the cliff apex, which is not always true as for cliffs 

made of hard materials and suffering rapid wave-induced erosion at their base. In case the sea is directly in contact 

with cliff face within the EO data used to compute the DEMs, the cliff foot line detection with the proposed algorithm 

is no longer possible. Instead the line of contact between the sea and the cliff face may be a relevant proxy of the cliff 

foot line. The detection of the cliff apex is still possible as long as the cliff face (in contact with the sea) covers several 

meshes within the DEM. The maturity of the proposed algorithm is considered as low, though a first implementation 

within some weeks is likely reachable.  

3.3.4 Algorithm 3d - Semi-automated linear feature extraction from DEM’s  

3.3.4.1 Algorithm Description  

Photogrammetric techniques have been used in the past for accurate 3D reconstructions- reconstitutions and 

specifically for extracting 3D point coordinates (X, Y, Z) as well as 3D lines. For this purpose, the appropriate image 

stereo pair must be available, while the extraction is a point-by-point process which in the past used to be manual. 

Following the development of analytical stereo-plotters this process became semiautomatic, while nowadays, with 

the availability of digital images and digital photogrammetric solutions, cost-effective almost-automated methods are 

widely offered for any visual-based measuring purpose. Though the photogrammetric production chain is almost 

automated, still human operators are required in the process by providing expertise not yet modelled by state-of-the-

art photogrammetric suites. 

• Input data 

High resolution optical stereo-pair imagery will be used, in this case SPOT-7 stereo imagery with spatial resolution 

1.5m acquired on 28/08/2019, on an on-the-sensor stereo mode. Meantime, Ground Control Points (GCPs) are needed 

in order to achieve the most accurate results of the bundle adjustment with RPC coefficients model. In this case GCPs 

are available for the Greek demonstration sites coming from existing orthomosaics (resolution 0.25m) with an 

accuracy RMSExy <0.35m. 

• Algorithms 

The first step of this is algorithm the restitution of orientation of the stereo-model, which in the case of HR and VHR 

optical satellite imagery it is done by deploying the RPC coefficients model approach. The whole process consists of 

calculating a mathematical model, which aims to restore a geometric relationship between the image and the object. 

This process of orientation of satellite imagery differs, in comparison, with the well-known process of aerial 

triangulation (which is based on the geometry of the central projection). The model used for high-resolution satellite 

imagery is the "Rational Function Model", which has attracted the interest of Photogrammetry and Remote Sensing 

due to the fact that some satellite imaging suppliers have adopted the Rational Function model as a replacement 

sensor model for image exploitation (Tao and Hu, 2002). 
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This model is based on polynomial coefficients and correlates the geographical coordinates of the object with the 

measured L, S coordinates. It is given by eighty coefficients (RPCs) and ten coefficients of scale and displacement. The 

model is in the form of two cubic equations of the coordinates of space. Separate rational functions are used to express 

the ratio of coordinates (L) and (S) (Equations 1 - 6). 

The result of this model provides the restitution of image orientation and then a second step follows for extracting 

the DEM, which is based in the use of two families of matching methods: 

i. Feature Based Matching 

Feature Based Matching (FBM) is a matching strategy that is very robust. It only needs coarse approximations and is 

very fast. It has an accuracy of about 1/3 of a pixel. The matching process computes interest values in two images of 

a matching pair that describe the appearances of features. The matching process determines common features in the 

pair by means of the computed interest values. 

ii. Least Squares Matching 

Least squares matching (LSM) is a matching strategy that is very accurate, but better approximations are required, 

and it is considered rather slow in comparison to FBM. It is mostly used to refine points obtained from FBM. The 

accuracy is about 1/10 pixel. The matching process uses a mask created from one image and a template from the 

second image at a previously matched point. The mask is shifted on the template until the sum of squares of the 

gradients is minimized. 

3.3.4.2 Validation  

The results of algorithms are being validated through in situ GPS measurements, for this reason points lying on cliff 

foot and apex are being collected through an on-the-field survey, with an accuracy of 2-3cm. These collected points 

are being compared with their homologous points identified on the 3D extracted lines. Of course, this set of points is 
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being identified in order to anticipate project and area specificities. According to past commercial projects executed 

by Terra Spatium, that exploit VHR optical data, an accuracy of 3-4 times the pixel size is being reported. 

In the framework of Space for Shore, the cliff lines produced within the Greek test sites, will be validated with in situ 

GPS measurements during a land survey performed on October 2019. 

3.3.4.3 Application Range and Maturity  

The maturity of the deployed algorithms is considered high, while in order to achieve a high accuracy, Ground Control 

Points (GCPs) are needed for the computation of the aerial triangulation. In cases that VHR satellite optical imagery 

(e.g. Pleiades) is used along with GCPs (measured on the ground) the relative vertical accuracy achieved is around 

2meters. 

3.3.5 Algorithm 3e - Beach width computation 

3.3.5.1 Algorithm Description  

• Input data 

This algorithm requires several inputs: 

• A reference line that is used to compute the beach width. This reference line can be the foot of the dune, 

cliff or coastal defence or any other line meaningful to end-users. 

• A water line that is used to compute the beach width. This waterline can be extracted from optical or SAR 

HR/VHR images. 

• The tide level at which the end-user wants the beach width to be computed. For instance, some end-users 

will prefer to know the beach width at high tide to assess the recreative potential of their beach. 

• Algorithms 

Roughly, the beach width is computed as the distance between a reference line denoting the foot of either the dune,  

or the cliff, or a defence structure and the waterline computed at low tide (total beach width), high tide (upper beach 

width) or using a time-averaged waterline (mean beach width in microtidal environment). Waterline is detected using 

algorithm of group 2 (Algorithm Group 2: Waterline and creek edge detection). For instance, along sandy coast 

experiencing large tidal variation the beach width will correspond to the distance between the dune foot and the 

waterline at high tide such as shown in Figure 3-24. This distance will be computed along transects perpendicular to 

the reference line and regularly spaced (10 – 100 m). An alongshore interpolation of the beach width may be required 

to produce a more continuous data. In area with microtidal environment the middle of swash zone appears as the 

best proxy of the waterline to compute the mean beach width.  
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Figure 3-24 - Schematic view of a typical beach elevation profile (cross-shore view) along sandy coasts where the 
beach width definition is indicated. The 0.8-m water level use to define the shoreline position correspond to the 

highest water level resulting from tide effect. Extracted from Burroughs and Trebbens (2008). 

• Tools 

Python, QGIS, DSAS 

• Output product 

Shapefile containing the reference line and the corresponding beach width along that line (Figure 3-25). 

 

 

Figure 3-25 - Example of beach width result 

3.3.5.2 Validation 

The horizontal accuracy of this algorithm is conditioned by both the accuracy of the waterline and the reference line. 

In case the reference line is provided by the end-user (no spatial error) and not derived from satellite imagery, the 

accuracy reduces to the accuracy of the water line extraction algorithm, which usually is of the order of the image 

pixel resolution (sub-metric to pluri-metric). 

3.3.5.3 Application Range and Maturity  
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Although not published, the maturity is high. This algorithm applies to any beaches (e.g. sandy, shingle) as long as the 

waterline can be extracted from optical of SAR images.  

3.3.6 Algorithm 3h- Dune foot extraction using supervised classification 

3.3.6.1 Algorithm Description  

• Input data  

This algorithm is designed to work with HR multispectral images, although its relevance depends on: 

• the average change rates 

• the duration of the temporal window addressed.  

The slower the dune transition moves and the shorter the temporal window is, the higher the resolution must be. For 

instance, image resolution of the order of 10 m, such as provided by Sentinel-2 and SPOT4-5, is enough to assess the 

coastal dune foot retreat during the past 25 year in SW France where the average retreat rates are larger than 0.5-

1/yr. 

• Algorithms 

Supervised classification method is applied to distinguish the beach area made of sand from the dune area which is 

usually covered by vegetation or if not by sand ridge casting shadows around. The most seaward contour of the 

vegetated dune class is taken as the proxy of the dune. Visual inspection of automatically extracted dune foot lines is 

necessary to allow manual correction/digitization in case the classifier fails in some regions of the study domain. 

• Tools 

The algorithm uses bash and python programming languages with support of sci-kit learn, Orfeo ToolBox and GDAL 

libraries. QGIS will be used for visual inspection and digitalization.  

• Output product 

The output of this algorithm is a vector of dune foot positions. 
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Figure 3-26 - Dune foot extracted in 1987 and 2018 from Sentinel-2 images 

3.3.6.2 Validation  

To validate the position of the dune foot in Aquitaine, we use the reference data provided by the Observatory of the 

Aquitaine Coast (OCA) available in the PYGMA catalog. The available dates are 1998, 2016, 2017 and 2018. On the 

ArcGIS GIS platform, points are generated every 20 m along the line of the dune foot extracted from satellite images 

for these four dates. With the "Near" tool, the distance is measured for each date between each point and the nearest 

in-situ dune foot position. According to Vos et al. 2019 subpixel accuracy can be reached for waterline extraction along 

sandy beaches based on supervised classification. Here, an accuracy of the order of the pixel size is expected as the 

transition between the dune system and the beach is less clear than for the transition between the water and the 

beach. 

3.3.6.3 Application Range and Maturity 

This algorithm should provide accurate results only for coastal areas with well-developed dunes covered by vegetation 

and showing relatively narrow dune face with respect to the image resolution. In case the transitional area between 

the beach and dune system is wide the extracted interface will correspond more to the dune scarp top line. Also, the 

comparison of subsequent dune foot lines will only be relevant if addressing temporal period large enough so that the 

observed changes are larger than the image resolution. While the classification method and diverse regularization 

methods are used routinely, the reference database for this kind of application need to be built by manually digitizing 

reference polygons over a subset of images. The algorithm can be considered as mature. 
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3.3.7 Algorithm 3i- Cliff line extraction using supervised classification 

3.3.7.1 Algorithm Description  

• Input data  

This algorithm is designed to work with HR multispectral images, although its relevance depends on: 

• the average change rates   

• the duration of the temporal window addressed. HR SAR data can also be used, specifically for the dune foot 

detection. 

The slower the cliff lines move and the shorter the temporal window is, the higher the resolution must be. For instance, 

image resolution of the order of 10 m, such as provided by Sentinel-2 and SPOT4-5, can be enough to detect small cliff 

retreat during the past 25 years at Erretegia cliffs (SW France) where large landslides have occurred or along some 

cliffs in Normandy (N France) which are particularly dynamic. 

According to the geometry and surface typology of the cliff studied and according to which lines (cliff top and/or cliff 

foot), the images used in the supervised classification must:  

• contain particular spectral features; and/or  

• be acquired at particular tide level and/or 

• be acquired with particular viewing angle and sun elevation.  

For instance, the presence of shadows seaward the cliff top can help detecting the cliff top, while it may prevent form 

detecting the cliff foot. The presence of a ground cover landward the cliff top with spectral signature very different 

from what can be observed on the cliff face and seaward is also crucial. Also, the use of images only acquired at high 

tide may allow detecting the cliff base at some sites where the cliff face is steep and when the satellite field of view is 

not obstructed by the cliff top. 

• Algorithms 

Regardless of the type of cliff line to be detected, a supervised classification method is applied to discriminate the 

different classes of ground cover, the main ones being:  

• water; wet/dry  

• sand/shingle beach 

• rock 

• terrestrial  

• vegetation  

• urbanization 

•  mix of vegetation  

• Urbanization 

• shadow.  

Then, distinct strategies are used for the extraction of cliff foot and cliff top. These extraction strategies are site-

specific and can be fully described/implemented only once a minimal knowledge about the site is reached and 

following an analysis of the image dataset to identify what are the features consistently present in the images. 

Cliff top: Usually the cliff top line will be located by the boundary between the classes: terrestrial vegetation; 

urbanization; mix of vegetation, and the other classes located seaward the cliff top such as the classes of: water, 

wet/dry sand/shingle, rock. The combination of steep cliff faces oriented in a direction opposite to the sun position, 

low sun elevation will cause shadows to appear. In that case, the cliff top line is easily located by the boundary between 

the classes: terrestrial vegetation; urbanization; mix of vegetation, and the class: shadow. 

Cliff foot: For cliff suffering erosion mainly from wave attacks, it can be reasonably assumed that during highest tide 

level the water domain will be in direct contact with cliff, without presence of beach or low-slopping rocky platforms 

in between. In case the geometrical conditions of the cliff regarding the sun exposition ensure that no any shadow is 

projected down the cliff, a relevant proxy for the cliff foot is the waterline at high tide. However, the tide level at high 
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tide varies from one date to another due to varying tide cycle and the presence of wave set-up and storm surge. Unless 

the cliff is a vertical wall, these variations lead to meter-scale horizontal shifts of the waterline along the cliff face. The 

use of the latter proxy is then relevant only for steep cliffs and for addressing long-term changes, which both make 

the errors introduced by the latter reasoning negligible. 

A necessary condition for cliff line extraction is the use of images acquired with a low viewing angle. The closer to the 

nadir the image is acquired the more accurate will be the positioning of the cliff lines. Basically, even after image 

georeferencing, a sensor located over the water domain imaging the cliff face will tend to put the pixels of cliff top too 

much landward. The opposite phenomenon occurs for a sensor located over the land domain with a tendency to shift 

seaward the top of the cliff. For this latter mode of acquisition, the cliff foot may also not be seen by the sensor when 

the cliff face is steep enough. 

A narrow buffer area along the cliff (indicating where the cliff lines are expected to be found) has to delimited to drive 

the identification of the inter-class boundaries corresponding to the cliff lines. Finally, a visual inspection of 

automatically extracted cliff lines is necessary to allow manual correction/digitization in case the classifier fails in some 

regions of the study domain. 

• Tools 

The algorithm uses bash and python programming languages with support of sci-kit learn, Orfeo ToolBox and GDAL 

libraries. QGIS will be used for visual inspection and digitalization.  

• Output product 

The output of this algorithm is a vector of cliff foot and/or cliff top positions. 

 

 

Figure 3-27 - Cliff foot extracted from Sentinel-2 images 

 

3.3.7.2 Validation  

The cliff lines are validated from cliff lines extracted from very high-resolution DEM (LiDAR), with centimeter precision. 

The lines of equal slopes are extracted every 10°. The isolines are also extracted each 1 m. The combination of these 

two information makes it possible to precisely identify the slope discontinuity at high altitude (cliff apex) and the 

equivalent at low altitude (cliff foot). On the ArcGIS GIS platform, points are generated every 20 m along the cliff apex 

extracted from satellite images. With the "Near" tool, the distance is measured for each date between each point and 

the nearest in-situ cliff apex for the same date. This process is also performed for the cliff foot. Considering the 

numerous potential sources of errors and misinterpretations a maximal accuracy of the order of the pixel size is 

expected. 

3.3.7.3 Application Range and Maturity  
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As discussed previously in this section, this algorithm may not be applicable to all cliffs and designed of the algorithm 

is mostly site-specific. Also, the comparison of subsequent cliff lines will only be relevant if addressing temporal period 

large enough or if the changes are brutal (landslides) so that the observed changes are larger than the image 

resolution. While the classification method and diverse regularization methods are used routinely, the reference 

database for this kind of application need to be built by manually digitizing reference polygons over a subset of images. 

Additionally, the automated extraction of the boundaries between several type of class will require significant 

developments. The maturity of this algorithm can then be considered as almost mature. 

 

3.3.8 Algorithm 3j - Top of the cliff movement monitoring using PS with ERS and ENVISAT 
data  

3.3.8.1 Algorithm Description  

The PS-InSAR technique allowed to perform a pre- and a post-event displacement analysis on the general rock massif 

stability, evaluating the state of activity of long-term ground displacements. 

• Input Data 

This algorithm has been tested for ERS1/2, ENVISAT SLC data.   

 

• Algorithms 

For the current application the proper algorithm was selected. Its selection was mainly based on the limited number 

of available ERS and ENVISAT SAR scenes for the area of study during the examined period. The interferometric 

possible approach used in this case (ERS 1 & 2 and ENVISAT), collecting a dataset with low temporal and spatial 

baseline applying the GAMMA/IPTA s/w is summarized in the following steps after coregistration of the scenes: 

Multi-reference processing in order to determine point height corrections (using one dimensional regression) as well 

as unwrapped phases. The unwrapped phases are then converted to a single reference time series using the Singular 

Value Decomposition (SVD) algorithm. 

An alternative possible version that is similar to the previous one is always starting with multi reference processing 

(more interferometric pairs) and then one reference image stack processing to record the surface deformation. 

Following the above technique starting with multi-reference processing we get a larger number of interferometric 

pairs also we can reduce the longest time interval between acquisitions.  

The results achieved are the point height corrections plus the annual average deformation rates in LOS (along the Line 

Of Sight), time series. 

• Tools 

For this algorithm is going to be used GAMMA/ IPTA. 

• Outputs Products 

As output this algorithm provides deformation maps in LOS (Line of Sight) of satellite.  
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Figure 3-28 - Example of PSI technique with Sentinel 1 data 

3.3.8.2 Validation  

For the validation of ground motion many scientists use a monitoring system based on remote sensing techniques, 

such as radar interferometry ground-based and terrestrial laser scanning, in order to monitor the ground deformation 

of the investigated area and to evaluate the residual risk (Frodella et al., 2016). More specific for the top of the cliff 

movement validation Martino et al., 2014 use field-based geomechanical investigations and remote geostructural 

investigations via a terrestrial laser scanner (TLS). Moreover, Crosetto et al., 2011 using as a validation method for the 

PSI 2D displacement information (in range and azimuth) using images from a single radar instrument. 

3.3.8.3 Application Range and Maturity  

PSI is an opportunistic deformation measurement method, i.e. it is able to measure deformation only over the 

available PSs. The PS density is usually low in vegetated, forested and low-reflectivity areas (e.g. very smooth surfaces), 

and in steep terrains facing the radar sensors. The potential of the PSI technique has been recognized since it was first 

proposed (Ferretti et al., 2001). In the last fifteen years, a wide range of PSI applications has been developed. At this 

point we are using a well-tested algorithm who provides very promising results. 
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3.4  ALGORITHM GROUP 4: BATHYMETRY  

3.4.1 Introduction  

The knowledge about nearshore bathymetry is of paramount importance to oceanography research, management 

and economic activities. Nevertheless, bathymetric data acquisition in shallow waters (0 to 50 m) with traditional 

methods (e.g., single and multi-beam echo sounder) have disadvantages such as safety and cost. For these reasons, 

satellite remote sensing has become increasingly important in the bathymetry estimation. Some works have delved 

into swell properties in the nearshore area due to the interaction with the sea-bottom to infer the bathymetry (e.g., 

Brusch et al., 2011; Mishra et al., 2014; Pereira et al., 2019) (Figure 3-29). Other works focused on the use optical 

satellite sensors to retrieve bathymetry either by: 

• calibrating an empirical model with in situ survey data (e.g. Lyzenga et al., 2006) or  

• calibrating a radiative transfer model which decomposes the radiometric intensity recorded at the water 

surface into contributions from the water column and the water bottom (Lee et al., 2002; Capo et al., 2014, 

Dekker et al., 2011).  
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 Figure 3-29 - Bathymetry map with the location of the Leixões buoy and the Sentinel-1A sub-image (black rectangle) 

between Barra and Praia de Mira (W Portugal) (modified from Pereira et al., 2019).  

3.4.2 State-of-the-art  

Several remote sensing techniques have been proposed to estimate the water depth in the last decades. In the case 

of optical sensors, there are two main approaches. In the first, available in situ data is used to calibrate parameters of 

an empirical model (Lyzenga et al., 2006; Stumpf et al., 2003) in which each water penetrating spectral band of the 

optical sensor is used in a linear combination. In the second type of approaches, a radiative transfer model is calibrated 

by estimating inherent and apparent optical properties of the water column by jointly exploiting water penetrating 

spectral bands of the sensor. Classical high resolution optical sensors (SPOT-5-6-7, Pleiades, Sentinel-2, Landsat-8, etc.) 

only offer a few water colour sensitive spectral bands and the radiative transfer model is simplified by considering 

some water optical properties as constant in the image (for instance bottom albedo and attenuation coefficients) and 

by empirically calibrating other parameters (for instance water absorption and backscattering). This has led to the 

development of a Quasi Analytical Algorithm (QAA) to resolve this calibration using water surface reflectance as inputs 

and water depth as an output (Lee et al., 2002; Capo et al., 2014). For hyperspectral sensors alternative approach to 

resolve radiative transfer model equations exists (e.g. Dekker et al., 2011), which are more adapted to very 

heterogeneous bottom conditions. Nevertheless, the utilization of such approach is limited by the water transparency 

and the variability in the optical properties of the water column and the reflecting bottom material (Adler-Golden et 

al., 2005). Therefore, its application in high energetic coasts with suspended sediments is restricted to water depths 

from 0 to 6 m. This limitation motivated the development of alternative methods which are focused on the change of 

wave properties due to the interaction with sea bottom topography (Brusch et al., 2011). When the waves propagate 

from deeper to shallower water their wavelength decreases and their direction changes, and as a result these 

properties allow to infer sea bottom features. Brusch et al. 2011 proposed for the first time, the application of the 

Fast Fourier Transform (FFT) over Synthetic-Aperture Radar (SAR) image to obtain a directional spectrum and then, to 

calculate the wavelength and wave direction and to estimate the water depth. These authors worked with SAR data 

obtained from the commercially available TerraSAR-X (TSX) data. After that, other authors have applied this 

methodology to SAR data obtained from the RISAT-1 commercial products (Mishra et al., 2014) and Sentinel-1 

missions (Wiehle and Pleskachecsky, 2018; Pereira et al., 2019). Pereira et al. 2019 compared the computed with the 

measured bathymetry to Aveiro coast (W Portugal) and they found the relative error of the water depth varies from 

6% to 10%. Alternatively, to the Fast Fourier Transform (FFT), the Wavelet transform (Chui, 1992) is more adequate to 

represent non-linear wave processes more common in shallow waters and can be used instead to the FFT in this 

nearshore domain (Abreu et al., submitted).  
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3.4.3 Algorithm 4b - Quasi-analytical model to retrieve bathymetry from HR/VHR optical 
data 

3.4.3.1 Algorithm Description 

• Input data 

Five main input data are needed to perform this approach: 

• Water surface reflectance image (mainly the green band) obtained after performing three pre-processing 

steps consisting in (1) atmospheric correction, (2) mask of non-water pixels, (3) sun glint correction 

• Deep water mask used to calibrate deep water parameters of the model 

• Pre-calibrated parameters of the QAA algorithm empirically estimated using IOP / AOP databases[1]  and 

spectral sensitivity of the targeted optical sensor 

• Bottom types map and bottom albedo if the targeted sites display heterogeneities 

• Tide level at time of image acquisition to transform water depth into water level in accordance to the 

hydrographic reference level 

 

• Algorithms 

The application of the QAA algorithm follows a four-steps strategy as described in Capo et al. 2014: 

• The deep-water mask defined during the pre-processing steps is used to estimate the mean deep water 

subsurface remote sensing reflectance (rrs
deep) for the targeted spectral band. The bottom albedo (Rrs

B) is 

considered as known but if the bottom type is homogeneous (sandy shore for instance), automatic strategies 

exist to directly infer the albedo from the image. 

• From rrs
deep, the total absorption and backscattering are estimated followed by the attenuation coefficient Kd 

in accordance with the equations of the QAA (Lee et al., 2002). 

• Then, the water depth h is estimated using the following equation: 

• Finally, water depths are converted into bathymetric values using the tide level at the time of image 

acquisition. 

 

• Tools 

As previously, two main software and toolboxes are needed essentially for the pre-processing steps: 

• ACOLITE software for atmospheric correction of Sentinel-2, Landsat-8 and recently Pleiades data 

• OTB toolbox for atmospheric correction of other optical sensor and to perform the supervised classification 

and mask generation  

 

• Output product 

The output product is directly a raster file containing bathymetry estimation for each valid water pixels. It can be 

converted to a xyz file or to iso-contours if requested.  

3.4.3.2 Validation 

The accuracy is generally poorer than with the empirical approach and RMSE reaches 1.3 m in the study of Capo et al. 

2014. Figure 3-30 shows a satellite derived bathymetry produced by i-Sea with image acquired in 2015 on the French 

Mediterranean coastline using a Pleiades data along with comparison with observations from a LIDAR survey. Results 

revealed a RMSE of 0,6 m on the entire area and an overall accurate detection of the nearshore sandbar location. 

https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=fr%2DFR&rs=de%2DDE&wopisrc=https%3A%2F%2Fbrockmannconsult.sharepoint.com%2Fsites%2FCoastalErosion%2F_vti_bin%2Fwopi.ashx%2Ffiles%2Fe29492a8749f488daaaba4eda90c3248&wdenableroaming=1&mscc=1&hid=7118579F-E06D-A000-DEDD-2127D9CF7310&wdorigin=ItemsView&wdhostclicktime=1590737647882&jsapi=1&newsession=1&corrid=7236d2a4-3380-44a0-85d2-059783f8a72f&usid=7236d2a4-3380-44a0-85d2-059783f8a72f&sftc=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Unknown&ctp=LeastProtected#_ftn1
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Figure 3-30 - Example of optical satellite derived bathymetry at the Lido de Sète (S France) with a Pléiades image 

acquired in 2015 and validation results. 

3.4.3.3 Application Range and Maturity  

This QAA approach can retrieve reliable depth up to 10 to 15 m in clear waters with bright sandy substrate. For 

example, in Capo et al. 2014 study on the French Atlantic sandy coastline, depths of up to 7 m have been retrieved 

successfully. Similar to the above-mentioned empirical approach, a few drawbacks have to be noted. It also assumes 

constant water conditions across the area and it is sensitive to bottom heterogeneity. The presence of clouds, shadows 

and waves can also restrict the method application. Also, because water depths need to be corrected from the tide 

level, data from tide modes or tide gauges.   

Nevertheless, this approach is cost effective and does not require in situ data, which are often missing or outdated in 

many places worldwide. Its maturity can be considered as high. 

3.4.4 Algorithm 4c (i,ii) - Bathymetry swell inversion 

3.4.4.1 Algorithm Description 

• Input Data 

The Optical/SAR georeferenced images in which swell condition are present (i.e., the wave period of the images must 

be higher than 15 seconds). 

The wave data from a directional wave buoy or from ERA5 dataset for the date of image acquisition are recommended 

to estimate the offshore wavelength. Nevertheless, if wave data are not available wavelength can be computed from 

the satellite image. 

The astronomical tidal level for the date of image acquisition is required. 

• Algorithms 

There are two bathymetry swell inversion algorithms according to the spectral analysis used: 

1. The algorithm 4ci-Fast Fourier Transform (FFT) that is suitable to estimate bathymetry to depth waters (z=15 

– 30 m). This approach follows a four-steps procedure as described by Pereira et al. 2019 and Stelzer et al. 

2019: 

The first step consists in the definition of a grid of centre points over the image. These points define the 

positions in the image where the local (i.e., in the vicinity of each point) estimation of the wave characteristics 

(i.e. wave direction and wavelength) is performed. Next, a squared region (image cell) centred in each point 
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of the grid is defined, whose width is specified independently of the grid spacing (in this way, partial 

superposition between adjacent cells is allowed).  

The second step is the spectral analysis for each defined squared cell resulting in a two-dimensional 

frequency-domain representation of the information content of each cell in the image. The FFT represents 

the energy that a signal shows distributed with respect to the frequency of each of its components, when 

considering a decomposition of such signal in sinusoidal components. If a signal displays a sinusoidal-like 

dominant component, this Fourier representation will reveal a high peak of energy at the frequency of such 

component. Thus, it will be a suitable tool for estimating the characteristics of the dominant sea waves (i.e. 

wavelength and wave direction) in a specific region. The wavelength (λ) (in number of pixels) of the dominant 

surface wave of that cell can be estimated through (Eq.1): 

𝜆 =
1

(
𝑑𝑥
2𝑀
)2
+ (

𝑑𝑦

2𝑁
)2 

where M is the number of columns of pixels, N is the number of rows of pixels, dx is the number of columns 

between two identified peaks in the frequency-domain representation of the cell image and dy the 

respective difference in number of rows.  

The value of the wavelength in meters is then obtained from the former by considering the image spatial 

resolution. The wave direction is the orientation of the segment connecting the two identified sharp peaks. 

The wavelengths and wave directions are associated to the coordinates of the centre point of the 

corresponding cell, in the georeferenced coordinate system provided by the coordinated control points 

which are attached to the satellite image.  

The third step is the bathymetric estimation from linear wave theory also known as Airy theory. This is an 

analytical solution of the momentum and mass conservation equations that describe the velocity field and 

pressure along the water column and establishes a relation between the wave celerity, the frequency and 

the water depth (linear dispersion relation). 

The approach considered for determining the sea-bottom depth (h) satisfies the set of values of the 

wavelength (λ) and the wavelength at deep water (λ0) given in the linear dispersion relation: 

  𝜆 = 𝜆0tanh(𝑘ℎ) 

where λ0=gT2/2π, T is the wave period, g is the gravity acceleration, k is the wave number and h is the sea-

bottom depth. The effect of a mean current was neglected. 

The bathymetry is computed from: 

ℎ = 2 atanh (
𝜆

𝜆0
) 

 

The last step is the application of low-pass filter to remove the noise in the computed values. This filter has 

two input parameters: the filter width is the scalar indicative of the width of the filter and the filter sharpness 

is the scalar indicating how sharp the transition between the pass- and reject-bands is. 

2. The algorithm 4cii- Wavelet Transform (WT) that is suitable to estimate bathymetry to shallow waters (z= 1 

– 15 m). This approach follows a three-steps procedure as described by Abreu et al. 2017, 2019: 

The first step consists in converting the image in a matrix where each value of the matrix corresponds to 

the intensity of the pixel grey shade. 

The second step is the spectral analysis with WT along each row and column of the matrix in order to estimate 

the wave characteristics (i.e. wavelength). Since the processed signal is obtained from the matrix reading 

through rows and columns, the methodology applied provides the horizontal and vertical components of the 

wavelength (λx and λy). Thus, the wavelength λ can be computed from the knowledge of both components 

as: 
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𝜆 = 𝜆𝜒 ∗
𝜆𝑦

√𝜆𝜒2 + 𝜆𝑦2
 

 

The third step is the bathymetric estimation from linear wave theory also known as Airy theory as was 

described for FFT. 

• Tools 

A set of Matlab routines were implemented to address both approaches. 

• Outputs Products 

The output product is directly a file containing bathymetry estimation for the domain covered by the linear dispersion 

relation. The output can be presented in a xyz file. Additionally, a bathymetry map can be created using a kriging 

interpolation in GIS software upon request. 

3.4.4.2 Validation  

The satellite derived bathymetry using the swell inversion algorithm 4ci-FFT for Portuguese coast was compared with 

the bathymetry provided by the Oceanographic Observatory of the Iberian Margin (RAIA Observatory). The results 

disclosed that 20 m estimated isobaths provided the best performance whereas the 35 m estimated isobaths provided 

the lowest performance (Figure 3-31). The relative error of the water depth varies between 6% and 10% (Pereira et 

al., 2019). 

 

Figure 3-31 - Depth differences in meters between observed isobaths (20 and 35 m) and satellite derived depths at 

these locations at Aveiro coast (Portugal). 

The satellite derived bathymetry using the swell inversion algorithm 4cii-WT has not been validated yet. 

3.4.4.3 Application Range and Maturity  

The algorithm 4ci-FFT, which is adequate for water depths between 15 m and 30 m, has been tested at Aveiro coast 

(Portugal) in images of different years: 2011, 2015 and 2019 (Pereira et al., 2019; Fernández et al., 2020) and at Bidart 

and Erretegia coast (France) in an image of year 2018 (Fernández et al., 2020). This algorithm can be considered as a 

demonstration algorithm only tested in two test sites with a set of seven images. The results obtained show that the 

relative error of the water depth ranges between 6% and 10% for water depths between 15 and 30 m. 
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Figure 3-32 - Satellite derived bathymetry using swell inversion algorithm with FFT for: a) Aveiro coast (Portugal) in 

February 2019 and b) Bidart coast (France) in March 2018. 

The algorithm 4cii- WT, which has been developed for water depths between 1 m and 15 m, has been only tested in a 

section of one satellite image at Aveiro coast (Portugal). The obtained results allow only infer that it is adequate to 

estimate the sea-bottom morphology but the accuracy assessment has not been already performed. It can be 

considered as an innovative or experimental algorithm. 
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3.5 ALGORITHM GROUP 6 - EXTRACTION OF SUBMERGED MORPHOLOGICAL 
STRUCTURES AND CHANGES 

3.5.1 Introduction   

Coastal areas, especially beaches, are more and more threatened by the complex effects of climate change, which 
induces stresses such as increased storminess and overall, more frequent extreme events. These can lead to pressures 
that can take the form of increased erosion or modification of the maximum run-up limit. Since nearshore sandbars 
represent a natural defence system against these phenomena, monitoring the dynamics and behaviour of such 
morphological features can help coastal managers better prepare for coastal protection actions.  

 

3.5.2 State-of-the-art  

Various methods were widely used for the quantification of sandbar crest positions, ranging from seasonal and annual 
echo-sounder data to LiDAR surveys, X-band radar images, photographic and satellite imagery and video techniques 
(Roman-Rivera and Ellis, 2019).   
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However, applications of satellite imagery to date have been mainly restricted to nearshore satellite-derived 
bathymetry, which can be further used to derive the locations of sandbars. Nevertheless, there are situations when a 
good quality bathymetry is not possible to be obtained (such as areas with moderate to high turbidity), but it is still 
possible to extract the positions of the sandbars. Therefore, dedicated approaches are required. A recent study of 
Athanasiou et al., 2018 discussed the suitability of using the Landsat 5, 7, 8 and Sentinel-2 satellite images for sandbar 
locations manual (visual) extraction in order to investigate decadal scale crescentic sandbar dynamics at Anmok beach 
in South Korea. To our knowledge, in exception to this work, there is no other study to date dealing with sandbar crest 
positions extraction (either manual or automatic) and analysis using high to moderate satellite images.  

3.5.3 Algorithm 6a Submerged sand banks 

3.5.3.1 Algorithm Description  

The algorithm is used to extract each submerged sandbar position using perpendicular profiles along the shoreline, 

based on multispectral satellite imagery (Tatui and Constantin, 2020). There are two distinct mechanisms (determined 

by the wave regime) that can be used to detect the position of a sandbar using a satellite image. The first one relies 

on a relative bathymetric estimation (not absolute values of water depth). This approach yields good results in case of 

low wave energy. In other situations, wave breaking occurs in the proximity of the shore, when the wave breaks on 

sandbars crest. It therefore creates a foam layer on the surface of the water, with very high reflectance response 

compared to the surrounding water. The maximum reflectance intensity of this foam region corresponds to the 

sandbar crest position (similar to video techniques). For these two scenarios, even if the observed object/phenomenon 

is different, it refers to the same morphometric features and the methodology relies on the same principle: reflectance 

spectrum is amplified over the areas where the sandbars are located. 

• Input Data 

The input data is represented by high to medium resolution multispectral satellite imagery. Visible and infrared (NIR 

or SWIR) wavelengths are required. The algorithm was tested on Sentine-2 data. Higher resolution images are 

expected to yield same quality results and even better. 

• Algorithms 

Several imagery pre-processing steps are required before the sandbar extraction can be performed, such as: scene 

cropping, resampling, masking areas that are not covered by water or combining the spectral bands from the visible 

domain, as to augment the increases in spectral response over the sandbar.  

The procedure for sandbars extraction follows several steps, which are detailed hereafter:  

1. A network of profiles, perpendicular to the shoreline is created.  

2. Along each profile, the satellite combined reflectance values are extracted.   

3. An exponential model is fitted to the graph of each profile perpendicular to the shoreline.  

4. A normalisation of the profile is performed, by subtracting the model from the original data vector.   

5. Using a moving window with a dimension, the maximum value within that region is computed. If the centre 

of the moving window corresponds with the identified maximum value, the position is qualified as a possible 

crest sandbar position. Also, if all the values within that moving window have a low standard deviation, then 

the point is not taken into consideration. Next, a supplementary filtration is performed, by removing points 

below the mean value of the positive numbers of the profile.  

6. The final step is to compute a distance matrix between all points. Only those that have a neighbour closer 

than a specific distance are kept. Since the features that we hunt for are linear ones, occasional presence of 

just one point in space is considered not enough as to represent a sandbar. 

 

• Tools 

In order to implement the methodology, the following software and libraries were used: Geospatial Data Abstraction 

Library (GDAL) for satellite data pre-processing; R for the sandbar extraction. 
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• Outputs Products 

Figure 3-33 below presents the sandbar position extracted from a Sentinel-2 image over different moments in time.   

 

Figure 3-33 - Sandbar position extracted from a Sentinel-2 image over different moments in time 

3.5.3.2 Validation  

Validation activities consists of comparing the distance from shore (m) extracted from Sentinel-2 compared with 

distance from shore (m) determined from bathymetric measurements. The result of validation work performed for 

multiple match-up pairs are shown in the following Figure 3-34. Using the Sentinel-2 images the mean error (bias) in 

the cross-shore distance from the shoreline is of 6.2 m with a median error decreasing to 5.4 m and a mean relative 

error of approximately 6%. However, the use of higher-resolution images such as those acquired by Pléaides 1 may 

results in lower detection errors (higher accuracy). 
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Figure 3-34 - Match-up Analysis for distance of shore between DEM and derived sand banks 

3.5.3.3 Application Range and Maturity  

The algorithm is developed using the new and innovative approach based on the combined reflectance of the 

submerged sand bars in the visible spectrum. The method has been applied on cloud free Sentinel-2 images from all 

seasons, covering various wave conditions, offered solid results. The area of interest is represented by the coastal area 

of Danube Delta, between Sfantu Gheorghe and Sulina.  

The algorithm was tested on more than 3 years of satellite data and was validated using consistent in situ 

measurements. The maturity of implementation allows replication in other areas and using other satellite data types.  

3.5.4 Algorithm 6b - Mapping change of submerged sandbars/sand ridges 

3.5.4.1 Algorithm Description  

This algorithm to identify submerged sandbars or ridges in remote sensing images is based on the spatial analysis of 

the spectral reflectance values in an optical band. A submerged sandbar or ridge can are characterised by as local 

maxima in the reflectance value field. A well-known ridge detector has been developed using the Hessian matrix 

(Mikolajczyk et al., 2005). 

• Input Data 

The algorithm has been developed and tested on Sentinel-2 data. The Sentinel-2 band 3 at 10m spatial resolution 

seems particularly well suited because the sandbars are visible and the noise is acceptable. 

• Algorithms 
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A few pre-processing steps are required before the sandbar ridge detection algorithm can be applied such as: QA of 

the inputs regarding the tides, turbidity of the water, sun glint effects, pixel identification including cloud screening 

and land/water discrimination as well as noise filtering. 

The following steps have been performed: 

• Calculation of the second order derivative matrix also called the "Hessian matrix using the  Scharr operator 

(Scharr, 2000) and the Canny algorithm (Canny, 1986) 

(
𝐻𝑥𝑥 𝐻𝑥𝑦
𝐻𝑥𝑦 𝐻𝑦𝑦
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with g(x,y) is the spectral reflectance, and x, y are the image coordinates (not the geographic coordinates) 

 

• Calculation of the major eigenvalue 

𝑚𝑎𝑗𝑜𝑟𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 = 
1
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2 +4𝐻𝑥𝑦
2 − 2𝐻𝑥𝑥𝐻𝑦𝑦 + 𝐻𝑦𝑦

2 ) 

 

• Thresholding and linking procedure 

 

 

• Tools: 

The processor is implemented as a plugin for the ESA SNAP software  

• Outputs Products 

The output product includes several bands including the original image and the retrieved sandbars/ridges. The 

following Figure 3-35 presents the original image and the over-laid detected sandbars. 

 

 

Figure 3-35 - Subset of the Sentinel-2 band 3 image of 2016-05-09 (left) and the over-laid detected sandbars in yellow 

(right) 
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Figure 3-36 - Gradient direction of band 3 as processing step for identification of the sandbar ridges. 

3.5.4.2 Validation 

The validation activities will comprise the processing of a set of Sentinel 2 images and the visual analysis.  

3.5.4.3 Application Range and Maturity  

The assessment of the application range is under investigation. 
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4. CONCLUSION AND OUTLOOK  

This document provides an overview of all algorithms available for producing indicators and finally the services to the 
users. The mapping of the algorithms to the user requirements provide a good assessment on which algorithms will 
be used for which coastal type and which site. It also gives the overall picture of the possible combinations of algorithm 
and EO data type (HR vs VHR) that can be used to address coastal erosion on the short-term (event to annual 
timescales) with a maximal accuracy or on the long term (interannual to decadal scales) usually coming with a poorer 
accuracy.  

The algorithms differ in their level of maturity and while some are already mature, well validated and applied to many 
different locations, others are on an experimental stage. This document will be updated accordingly, providing further 
input for validation and application range of the single algorithms. This should allow us to identify which algorithm 
performs best for each couple indicator / site, if not already done. These conclusions could then be extended at a 
larger scale to other coastal European regions. 
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5. ANNEX 

An overview table of the not used algorithms from the first phase who are fully described in 

Technical Specification 1.1 from last year: 

Algorithm 
Group 

Algorithm  Maturity level Partner Suitable for: 

Product Name 

 

Water Line and 

Creek Edge 

Detection 

 

Algorithm 2b 
Water line 
detection using 
NDWI  
**(this algorithm 
has been 
regrouped in 2a 
for phase 2) 

3 I-Sea Waterline (sea/land 
interface)   

Middle of swash zone   

Maximum swash (or 
run-up) excursion 
during major storms  

Beach width  

 

 Algorithm 2c 

Water line 

detection using a 

supervised 

classification 

process 

 

2 I-Sea Waterline (sea/land 

interface)  

Middle of swash zone  

Maximum swash (or 

run-up) excursion 

during major storms 

Beach width 

 

 Algorithm 2d  

Water line 

detection using 

binary products 

from SAR 

amplitude data 

 

1 Harokopio 
University  

Waterline (sea/land 

interface)  

Middle of swash zone  

Maximum swash (or 

run-up) excursion 

during major storms 

Beach width 

Extraction of 

subaerial 

morphological 

structures and 

changes 

 

Algorithm 3a 

Dune foot 

extraction using 

the cross-shore 

variation of first-

order texture 

metrics from VHR 

optical data 

 

2 I-Sea Dune foot 

Middle of swash zone 

Maximum swash (or 

run-up) excursion 

during major storms 

 

 Algorithm 3b 

Dune foot 

extraction based on 

beach/dune slope 

from DEM 

 

1 I-Sea Dune foot  

 Algorithm 3c 1 I-Sea Cliff foot 
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Cliff line extraction 

using the cross-

shore variation of 

the beach/cliff 

slope from DEM 

 

Cliff apex 

 

 Algorithm 3g 

Intertidal creek 

morphological 

characteristics 

 

1 Brockmann 
Consult  

Tidal creeks: number, 
length, form, form and 
number of tidal creek 
endings  

Erosion at tidal creek 
edges 

 

Bathymetry 

 

Algorithm 4a 

Empirical model to 

retrieve 

bathymetry from 

HR/VHR optical 

data 

 

3 I-Sea Bathymetry  

Classification 

methods 

 

Algorithm 5a 

Supervised 

classification 

approaches based 

on optical data 

 

3 I-Sea Underwater seabed type 

(sandy/rocky/vegetated)  

Waterline (sea/land 

interface)  

Maximum swash (or 

run-up) excursion 

during major storms 

Coastal and intertidal 

habitat and land cover 

mapping 

 
 Algorithm 5b 

Classification based 

on texture 

information 

derived from SAR 

amplitude data 

 

3 Harris Coastal and intertidal 

habitat and land cover 

mapping 

 

 


