

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

The Submerged Parts of the Coastal Picture

Indicators for describing the « submerged »

esa

- Foreshore morphology is influencing the dynamics of the coastlines
- Submerged indicators for assessing the overall **sedimentary budget**
- Assess the impact and effectiveness of coastal protection measures such as beach nourishment or sandbags barrier.
- Valuable information for submerged ecosystem changes

- Key indicators for the submerged systems have been developed
 Vertical erosion of the foreshore
 Strong dynamics of the nearshore sandbars
 Information
 Detection of
 Adaptation
 - Precursors for coastal erosion
 Information on sediment depletion
 Detection of human impact
 Adaptation of the system to climate
 - Adaptation of the system to climate change

Intertidal widths and flooding index

- Automated selection of cloudfree images of all water levels for user defined regions
- Distribution of dry-fallen water covered areas by spectral indices and thresholding
- Relation between dry-fallen and water covered cases
- Manual quality check during the process possible

Intertidal Creeks – a moving environment

- Low tide acquisitions
- Development over time: index of water covered to dry—fallen cases or vice versa
- Identification of stable and changing areas

Bathymetry - derived from optical satellite imagery .eesa

Bathymetry - derived products

Meso-tidal context

Deltaic deposits

Seasonal sedimentary fluctuations

Submerged Sandbars – extraction from optical data esa

Approach based on

- the spectral response of sandbars locations
- multispectral satellite data.

Each submerged sandbar position extracted using perpendicular profiles along the shoreline.

 For each profile, reflectance values are extracted, thus taking advantage of all information in the visible part of the electromagnetic spectrum.

High diversity of sandbar morphologies and dynamics

→ THE EUROPEAN SPACE AGENCY

1.5 km

Validation Data

SPACE FOO

-ield measurements

- Available data sets
 - Field measurements (intertidal FEW!)
 - Airborne orthophotos
 - Airborne Laserscan data
- Validation in the foreshore is challenging due to difficult data collection.
- Intertidal areas can only be visited during low tide
- measurements depend on water level (e.g. position of creeks)
- Fast changing environment

· eesa

Submerged Sandbars Heiligenhafen (Baltic Sea)

Conclusion - perspectives

- The submerged part and intertidal areas have been addressed with several indicators
- Users have now data and tools on hand that provide information they did not see before

"It is increadible what is possible meanwhile"

"Those are tools we were awaiting for a long time"

Turning indicators into qualitative and holistic information: Sediment budget

Vulnerability Indicator